Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405789

ABSTRACT

Progesterone production by the corpus luteum is fundamental for establishing and maintaining pregnancy. The pituitary gonadotropin luteinizing hormone (LH) is recognized as the primary stimulus for luteal formation and progesterone synthesis, regardless of species. Previous studies demonstrated an elevation in abundance of genes related to glucose and lipid metabolism during the follicular to luteal transition. However, the metabolic phenotype of these highly steroidogenic cells has not been studied. Herein, we determined acute metabolic changes induced by LH in primary luteal cells and defined pathways required for progesterone synthesis. Untargeted metabolomics analysis revealed that LH induces rapid changes in vital metabolic pathways, including glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway, de novo lipogenesis, and hydrolysis of phospholipids. LH stimulated glucose uptake, enhanced glycolysis, and flux of [U- 13 C 6 ]-labeled glucose-derived carbons into metabolic branches associated with adenosine 5'-triphosphate (ATP) and NADH/NADPH production, synthesis of nucleotides, proteins, and lipids, glycosylation of proteins or lipids, and redox homeostasis. Selective use of small molecule inhibitors targeting the most significantly changed pathways, such as glycolysis, TCA cycle, and lipogenesis, uncovered cellular metabolic routes required for LH-stimulated steroidogenesis. Furthermore, LH via the protein kinase A (PKA) pathway triggered post- translational modification of acetyl-CoA carboxylase alpha (ACACA) and ATP citrate lyase (ACLY), enzymes involved in de novo synthesis of fatty acids. Inhibition of ACLY and fatty acid transport into mitochondria reduced LH-stimulated ATP, cAMP production, PKA activation, and progesterone synthesis. Taken together, these findings reveal novel hormone-sensitive metabolic pathways essential for maintaining LHCGR/PKA signaling and steroidogenesis in ovarian luteal cells. Significance: The establishment and maintenance of pregnancy require a well-developed corpus luteum, an endocrine gland within the ovary that produces progesterone. Although there is increased awareness of intracellular signaling events initiating the massive production of progesterone during the reproductive cycle and pregnancy, there are critical gaps in our knowledge of the metabolic and lipidomic pathways required for initiating and maintaining luteal progesterone synthesis. Here, we describe rapid, hormonally triggered metabolic pathways, and define metabolic targets crucial for progesterone synthesis by ovarian steroidogenic cells. Understanding hormonal control of metabolic pathways may help elucidate approaches for improving ovarian function and successful reproduction or identifying metabolic targets for developing nonhormonal contraceptives.

2.
Animals (Basel) ; 13(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893910

ABSTRACT

Fibroblast growth factor 21 (FGF21) has been identified in multiple mammalian species as a molecular marker of energy metabolism while also providing negative feedback to the gonads. However, the role of FGF21 in regulating the energetic and reproductive physiology of beef heifers and cows has yet to be characterized. Herein, we investigated the temporal concentrations of FGF21 in female beef cattle from the prepubertal period to early lactation. Circulating concentrations of FGF21, non-esterified fatty acids, plasma urea nitrogen, glucose, and progesterone were assessed. Ultrasonography was employed to determine the onset of puberty and resumption of postpartum ovarian cyclicity as well as to measure backfat thickness. Finally, cows and calves underwent the weigh-suckle-weigh technique to estimate rate of milk production. We have revealed that FGF21 has an expansive role in the physiology of female beef cattle, including pubertal onset, adaptation to nutritional transition, rate of body weight gain, circulating markers of metabolism, and rate of milk production. In conclusion, FGF21 plays a role in physiological functions in beef cattle that can be applied to advance the understanding of basic scientific processes governing the nutritional regulation of reproductive function but also provides a novel means for beef cattle producers to select parameters of financial interest.

3.
Animals (Basel) ; 13(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894013

ABSTRACT

The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.

4.
Biol Reprod ; 109(3): 367-380, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37283496

ABSTRACT

Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.


Subject(s)
Fibroblast Growth Factor 2 , Progesterone , Animals , Cattle , Female , Cell Proliferation , Collagen/metabolism , Corpus Luteum/metabolism , Dinoprost/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblasts/metabolism , Luteolysis , Progesterone/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
Life Sci Alliance ; 6(7)2023 07.
Article in English | MEDLINE | ID: mdl-37188480

ABSTRACT

Prostaglandins are arachidonic acid-derived lipid mediators involved in numerous physiological and pathological processes. PGF2α analogues are therapeutically used for regulating mammalian reproductive cycles and blood pressure, inducing term labor, and treating ocular disorders. PGF2α exerts effects via activation of calcium and PKC signaling, however, little is known about the cellular events imposed by PGF2α signaling. Here, we explored the early effects of PGF2α on mitochondrial dynamics and mitophagy in the bovine corpus luteum employing relevant and well characterized in vivo and in vitro approaches. We identified PKC/ERK and AMPK as critical protein kinases essential for activation of mitochondrial fission proteins, DRP1 and MFF. Furthermore, we report that PGF2α elicits increased intracellular reactive oxygen species and promotes receptor-mediated activation of PINK-Parkin mitophagy. These findings place the mitochondrium as a novel target in response to luteolytic mediator, PGF2α. Understanding intracellular processes occurring during early luteolysis may serve as a target for improving fertility.


Subject(s)
Dinoprost , Mitochondrial Dynamics , Female , Cattle , Animals , Dinoprost/pharmacology , Dinoprost/metabolism , Mitophagy , Corpus Luteum/metabolism , Signal Transduction , Mammals/metabolism
6.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37061806

ABSTRACT

An androgen excess ovarian micro-environment may limit follicle progression in sheep. Two populations of ewes with divergent follicular fluid androstenedione (A4) were identified in a flock in Jordan: High A4; (A4) ≥ 30 ng/mL, (N = 12) or Control A4 (Control); A4 ≤ 15 ng/mL; (N = 12). We hypothesized High A4 ewes would have increased steroidogenic enzyme mRNA abundance, inflammation, and follicular arrest. Messenger RNA abundance for steroidogenic enzymes StAR, CYP17A1, CYP11A1, and HSD3B1 were increased in theca cells while CYP17A1, CYP19A1, and HSD3B1 were increased in granulosa cells in High A4 ewes compared to Control. Gonadotropin receptor mRNA expression for LHCGR was increased in theca and FSHR in granulosa in High A4 ewes. Messenger RNA expression of FOS when reduced, increases expression of CYP17A1 which was observed in High A4 granulosa cells compared to Control. Furthermore, High A4 ewes had greater numbers of primordial follicles (P < 0.001) and fewer developing follicles compared to Control before, and after 7 d of culture, indicating follicular arrest was not alleviated by cortex culture. Increased fibrosis in the ovarian cortex was detected in High A4 ewes relative to Control (P < 0.001) suggesting increased inflammation and altered extracellular matrix deposition. Thus, this High A4 ewes population has similar characteristics to High A4 cows and women with polycystic ovary syndrome suggesting that naturally occurring androgen excess occurs in multiple species and may be a causative factor in follicular arrest and subsequent female sub- or infertility.


Excess androgen (androstenedione; A4) in ewes can result in ovarian follicular arrest and fibrosis contributing to anovulation in sheep. We have identified a naturally occurring ovarian A4 excess in a sheep population with similar characteristics to High A4 cows, both of which are similar to that in women with polycystic ovary syndrome indicating that several mammalian species experience naturally occurring androgen excess resulting in infertility or follicle arrest. Somatic cells, theca and granulosa, surrounding the egg in High A4 ewes had increased expression of steroidogenic enzymes, similar to that seen in High A4 cows, permitting more ovarian cells to manufacture androgens, which may be the cause of androgen excess. Thus, naturally occurring androgen-excess in domestic livestock females can be utilized as models to research the causes of androgen excess and determine the mechanisms that result in follicular arrest and sub- or infertility.


Subject(s)
Cattle Diseases , Sheep Diseases , Female , Animals , Sheep/genetics , Cattle , Androgens , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Gonadotropin/genetics , Granulosa Cells/metabolism , Multienzyme Complexes , Fibrosis
7.
J Anim Sci ; 100(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648128

ABSTRACT

Beef cows with excess androstenedione (A4; High A4) in follicular fluid (FF) and secreted by the ovarian cortex have been reported from the University of Nebraska-Lincoln physiology herd displaying characteristics reminiscent of polycystic ovary syndrome (PCOS). Thus, we hypothesized that naturally occurring High A4 cows were present in other dairy and beef herds. Fourteen Jordan (Amman, Jordon) dairy heifers and 16 U.S. Meat Animal Research Center beef heifers were classified by FF (High A4: A4 > 40 ng/mL and Control: A4 < 20 ng/mL) and/or cortex culture media (High A4 > 1 ng/mL/d or Control < 1 ng/mL/d). High A4 dairy heifers (n = 6) had greater A4 concentrations (7.6-fold) in FF and (98-fold) greater in ovarian cortex culture media with greater numbers of primordial and fewer later-stage follicles than Controls (n = 8) even after 7 d of culture. Also, the ovarian cortex had greater staining for Picro Sirius red in High A4 dairy heifers compared with Controls indicating increased fibrosis. Thecal cells from High A4 dairy heifers had greater STAR, LHCGR, CYP17A, CD68, and PECAM mRNA expression with increased mRNA abundance of CYP17A1 and CD68 in the ovarian cortex cultures compared with Control dairy heifers. Similarly, cortex culture media from High A4 beef heifers (n = 10) had increased A4 (290-fold; P ≤ 0.001), testosterone (1,427-fold; P ≤ 0.001), and progesterone (9-fold; P ≤ 0.01) compared with Control heifers with increased primordial follicles and decreased later-stage follicles even after 7 d of culture, indicating abnormal follicular development. High A4 ovarian cortex cultures from beef heifers also had increased fibrosis markers and greater expression of PECAM (P = 0.01) with a tendency for increased vascular endothelial cadherin compared with Controls (n = 6). These two trials support our hypothesis that naturally occurring androgen excess cows are present in other dairy and beef herds. The ability to identify these females that have excess A4 ovarian microenvironments may allow for their use in understanding factors causing abnormal follicle development linked to androgen excess and inflammation.


Androgen steroid hormones, normally present in the male, but produced in excess in the female, can result in inflammation and dysfunction of tissues, which, in turn, can lead to ovulatory dysfunction. We have previously identified females with naturally occurring excess androgen in our research herd. In the current paper, we have also identified two other cow populations (one dairy and one beef) that have similar excess androgen production. This suggests that these excess androgen females occur naturally and may be used as models to study androgen excess situations that contribute to subfertility.


Subject(s)
Cattle Diseases , Polycystic Ovary Syndrome , Androgens , Animals , Cattle , Culture Media , Female , Fibrosis , Humans , Polycystic Ovary Syndrome/veterinary , RNA, Messenger , Tumor Microenvironment
8.
J Anim Sci ; 100(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35648129

ABSTRACT

A previous study reported that a 400-mg dose of medroxyprogesterone acetate (MPA) reduced male reindeer aggression and blocked development of secondary sexual characteristics but did not completely impair fertility. Here we have repeated that protocol in two separate trials. In 2017, tissues and blood samples, collected from MPA and control (CTL) reindeer bulls, euthanized at 30 and 60 d post-treatment were used to evaluate testes histology and morphometrics, cfos activity in the brain and androgen levels. While testes weight tended to decline from August to September in both groups, indices of spermatogenesis remained high. By September, indices of spermatogenesis were declining in both groups with sperm density lower (P = 0.05) in MPA compared to CTL bulls. Aug CTL bulls had the highest concentrations of androstenedione (A4) (P = 0.009) and testosterone (T) (P = 0.08), whereas these androgens were baseline in Aug MPA bulls. By September, A4 and T levels in CTL bulls declined to levels measured in MPA bulls. Cfos activity had a greater number (P = 0.02) of cfos positive neurons in the central amygdala in MPA compared to CTL bulls, suggesting a heightened fear response among the MPA bulls. In the second trial (2019), MPA-treated bulls, with (E, n = 4) and without (IE, n = 4) breeding experience, were blood sampled at key points from July through September when they were put in individual harems with estrous-synchronized cows. Concentrations of T were greatest (P < 0.001) among E bulls prior to MPA treatment but 1 mo after treatment, both T and A4 were baseline in all eight reindeer. Semen collected by electroejaculation at 60 d post-MPA treatment revealed only minor differences in sperm abnormalities between E and IE bulls using both fresh and frozen/thawed semen. Only three bulls (2 E and 1 IE) sired offspring. Breeding success was not related to previous breeding experience, body weight, or bull age. The failure of some MPA bulls to breed appears to be a behavioral, not a physiological, limitation. Limited application of MPA is clearly a useful tool for managing rut-aggression in non-breeding reindeer. However, the possibility that semen could be collected from MPA-treated bulls using restraint and mild sedation rather than general anesthesia should be investigated. This could improve the quality of semen collection while enhancing the safety of both handlers and animals.


A single 400 mg dose of MPA given to reindeer bulls just before the onset of rut eliminates aggressive behavior and suppresses androgen concentrations without dramatic differences in the gross or histological structure of the testes within the first 30 d of treatment. By 60 d post-treatment, there is evidence of smaller testes size and decreased sperm density in treated bulls. However, if given the opportunity, some treated bulls can still successfully breed. Breeding success in MPA bulls was not solely related to previous breeding experience, body weight, or bull age. Androgen concentrations and semen characteristics did not vary with previous breeding experience. Failure of some treated bulls to breed appears to be a behavioral limitation. Differences in brain activity between control and treated bulls were few except for increased cfos activity in the central amygdala of MPA bulls, potentially increasing the fear response in these reindeer.


Subject(s)
Reindeer , Semen Analysis , Androgens , Animals , Brain , Cattle , Female , Male , Medroxyprogesterone Acetate , Plant Breeding , Semen Analysis/veterinary , Testis
9.
Biol Reprod ; 106(1): 118-131, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34726240

ABSTRACT

A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n = 9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n = 11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A isoforms could rescue the High A4 phenotype. High A4 (n = 5) and control (n = 5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165B (50 ng/mL), or (4) VEGFA165 + VEGFA165B (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. The VEGFA165 and VEGFA165b both reduced IL-13, INFα, and INFß secretion in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment and may promote folliculogenesis.


Subject(s)
Androstenedione/analysis , Anovulation/veterinary , Cattle Diseases/drug therapy , Inflammation/drug therapy , Ovarian Follicle/drug effects , Vascular Endothelial Growth Factor A/administration & dosage , Androstenedione/metabolism , Animals , Anovulation/drug therapy , Anovulation/physiopathology , Anti-Mullerian Hormone/metabolism , Cattle , Cytokines/metabolism , Female , Fibrosis , Follicular Fluid/chemistry , Ovarian Follicle/physiopathology , Ovary/metabolism , Ovary/pathology , Oxidative Stress/drug effects , Protein Isoforms/administration & dosage , Tissue Culture Techniques/veterinary
10.
Front Cell Dev Biol ; 9: 723563, 2021.
Article in English | MEDLINE | ID: mdl-34820368

ABSTRACT

In the absence of pregnancy the ovarian corpus luteum undergoes regression, a process characterized by decreased production of progesterone and structural luteolysis involving apoptosis. Autophagy has been observed in the corpus luteum during luteal regression. Autophagy is a self-degradative process important for balancing sources of cellular energy at critical times in development and in response to nutrient stress, but it can also lead to apoptosis. Mechanistic target of rapamycin (MTOR) and 5' AMP-activated protein kinase (AMPK), key players in autophagy, are known to inhibit or activate autophagy, respectively. Here, we analyzed the signaling pathways regulating the initiation of autophagy in bovine luteal cells. In vivo studies showed increased activating phosphorylation of AMPKα (Thr172) and elevated content of LC3B, a known marker of autophagy, in luteal tissue during PGF2α-induced luteolysis. In vitro, AMPK activators 1) stimulated phosphorylation of regulatory associated protein of MTOR (RPTOR) leading to decreased activity of MTOR, 2) increased phosphorylation of Unc-51-Like Kinase 1 (ULK1) and Beclin 1 (BECN1), at sites specific for AMPK and required for autophagy initiation, 3) increased levels of LC3B, and 4) enhanced colocalization of autophagosomes with lysosomes indicating elevated autophagy. In contrast, LH/PKA signaling in luteal cells 1) reduced activation of AMPKα and phosphorylation of RPTOR, 2) elevated MTOR activity, 3) stimulated phosphorylation of ULK1 at site required for ULK1 inactivation, and 4) inhibited autophagosome formation as reflected by reduced content of LC3B-II. Pretreatment with AICAR, a pharmacological activator of AMPK, inhibited LH-mediated effects on RPTOR, ULK1 and BECN1. Our results indicate that luteotrophic signaling via LH/PKA/MTOR inhibits, while luteolytic signaling via PGF2α/Ca2+/AMPK activates key signaling pathways involved in luteal cell autophagy.

11.
Data Brief ; 37: 107217, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34189206

ABSTRACT

Microarray analysis using Affymetrix Bovine GeneChip 1.0 ST Array to determine RNA expression analysis was performed on somatic granulosa cells from two different groups of cows classified based on androstenedione concentration within the follicular fluid (Control vs High A4) of estrogen-active dominant follicles. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE97017 - RNA Expression Data from Bovine Ovarian Granulosa Cells from High or Low Androgen-Content Follicles). Subsequent ANOVA determined genes that were enriched (≥ 1.5 fold more) or decreased (≤ 1.5 fold less) in the High A4 granulosa cells compared to Control granulosa cells and analyzed filtered datasets of these differentially expressed genes are presented as tables. MicroRNAs that are differentially expressed in Control and High A4 granulosa cells are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values are shown as a figure. Ingenuity Pathway Analysis determined upstream regulators of differently expressed genes as presented in a table. These data have been further analyzed and interpreted in the companion article "A High-Androgen Microenvironment Inhibits Granulosa Cell Proliferation and Alters Cell Identity" (McFee et. al., 2021 [1].

12.
Mol Cell Endocrinol ; 531: 111288, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33905753

ABSTRACT

A naturally occurring bovine model with excess follicular fluid androstenedione (High A4), reduced fertility, and polycystic ovary syndrome (PCOS)-like characteristics has been identified. We hypothesized High A4 granulosa cells (GCs) would exhibit altered cell proliferation and/or steroidogenesis. Microarrays of Control and High A4 GCs combined with Ingenuity Pathway Analysis indicated that High A4 GCs had cell cycle inhibition and increased expression of microRNAs that inhibit cell cycle genes. Granulosa cell culture confirmed that A4 treatment decreased GC proliferation, increased anti-Müllerian hormone, and increased mRNA for CTNNBIP1. Increased CTNNBIP1 prevents CTNNB1 from interacting with members of the WNT signaling pathway thereby inhibiting the cell cycle. Expression of CYP17A1 was upregulated in High A4 GCs presumably due to reduced FOS mRNA expression compared to Control granulosa cells. Furthermore, comparisons of High A4 GC with thecal and luteal cell transcriptomes indicated an altered cellular identity and function contributing to a PCOS-like phenotype.


Subject(s)
Androstenedione/pharmacology , Gene Expression Profiling/methods , Gene Regulatory Networks/drug effects , Granulosa Cells/cytology , MicroRNAs/genetics , Animals , Cattle , Cell Proliferation/drug effects , Cells, Cultured , Cellular Microenvironment , Female , Gene Expression Regulation/drug effects , Granulosa Cells/chemistry , Granulosa Cells/drug effects , Models, Biological , Oligonucleotide Array Sequence Analysis , Primary Cell Culture
13.
Biol Reprod ; 104(6): 1360-1372, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33709137

ABSTRACT

We hypothesized the manner that heifers achieve puberty may indicate their future reproductive longevity. Heifers with discontinued or delayed cyclicity during puberty attainment may have irregular reproductive cycles, anovulation, and infertility in their first breeding season contributing to a shorter reproductive lifespan. Therefore, plasma progesterone (P4) was measured from weaning to breeding on 611 heifers born 2012-2017 and four pubertal classifications were identified: (1) Early; P4 ≥ 1 ng/ml < March 12 with continued cyclicity, (2) Typical; P4 ≥ 1 ng/ml ≥ March 12 with continued cyclicity, (3) Start-Stop; P4 ≥ 1 ng/ml but discontinued cyclicity, and (4) Non-Cycling; no P4 ≥ 1 ng/ml. Historical herd records indicated that 25% of heifers achieved puberty prior to March 12th in the 10 years prior to the study. Start-Stop and Non-Cycling yearling heifers were lighter indicating reduced growth and reproductive maturity traits compared with Early/Typical heifers. In addition, Non-Cycling/Start-Stop heifers were less responsive to prostaglandin F2 alpha (PGF2α) to initiate estrous behavior and ovulation to be artificially inseminated. Non-Cycling heifers had fewer reproductive tract score-5 and reduced numbers of calves born in the first 21-days-of-calving during their first breeding season. Within the Start-Stop classification, 50% of heifers reinitiated cyclicity with growth traits and reproductive parameters that were similar to heifers in the Early/Typical classification while those that remained non-cyclic were more similar to heifers in the Non-Cycling group. Thus, heifers with discontinued cyclicity or no cyclicity during puberty attainment had delayed reproductive maturity resulting in subfertility and potentially a shorter reproductive lifespan.


Subject(s)
Cattle/physiology , Reproduction/physiology , Sexual Maturation , Animals , Female , Longevity , Periodicity
14.
J Vis Exp ; (167)2021 01 14.
Article in English | MEDLINE | ID: mdl-33522510

ABSTRACT

Follicle development from the primordial to antral stage is a dynamic process within the ovarian cortex, which includes endocrine and paracrine factors from somatic cells and cumulus cell-oocyte communication. Little is known about the ovarian microenvironment and how the cytokines and steroids produced in the surrounding milieu affect follicle progression or arrest. In vitro culture of ovarian cortex enables follicles to develop in a normalized environment that remains supported by adjacent stroma. Our objective was to determine the effect of nutritional Stair-Step diet on the ovarian microenvironment (follicle development, steroid, and cytokine production) through in vitro culture of bovine ovarian cortex. To accomplish this, ovarian cortical pieces were removed from heifers undergoing two different nutritionally developed schemes prior to puberty: Control (traditional nutrition development) and Stair-Step (feeding and restriction during development) that were cut into approximately 0.5-1 mm3 pieces. These pieces were subsequently passed through a series of washes and positioned on a tissue culture insert that is set into a well containing Waymouth's culture medium. Ovarian cortex was cultured for 7 days with daily culture media changes. Histological sectioning was performed to determine follicle stage changes before and after the culture to determine effects of nutrition and impact of culture without additional treatment. Cortex culture medium was pooled over days to measure steroids, steroid metabolites, and cytokines. There were tendencies for increased steroid hormones in ovarian microenvironment that allowed for follicle progression in the Stair-Step versus Control ovarian cortex cultures. The ovarian cortex culture technique allows for a better understanding of the ovarian microenvironment, and how alterations in endocrine secretion may affect follicle progression and growth from both in vivo and in vitro treatments. This culture method may also prove beneficial for testing potential therapeutics that may improve follicle progression in women to promote fertility.


Subject(s)
Ovary/physiology , Tissue Culture Techniques/methods , Animals , Cattle , Chemokines/metabolism , Culture Media , Female , Imaging, Three-Dimensional , Metabolome , Oocytes/cytology , Ovarian Follicle/cytology , Ovary/cytology , Staining and Labeling , Steroids/metabolism
16.
Sci Rep ; 10(1): 11287, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647143

ABSTRACT

Establishment and maintenance of pregnancy depends on progesterone synthesized by luteal tissue in the ovary. Our objective was to identify the characteristics of lipid droplets (LDs) in ovarian steroidogenic cells. We hypothesized that LDs are a major feature of steroidogenic luteal cells and store cholesteryl esters. Whole bovine tissues, isolated ovarian steroidogenic cells (granulosa, theca, small luteal, and large luteal), and isolated luteal LDs were assessed for LD content, LD-associated proteins and lipid analyses. Bovine luteal tissue contained abundant lipid droplets, LD-associated perilipins 2/3/5, hormone-sensitive lipase, and 1-acylglycerol-3-phosphate O-acyltransferase ABHD5. Luteal tissue was enriched in triglycerides (TGs) compared to other tissues, except for adipose tissue. Luteal cells were distinguishable from follicular cells by the presence of LDs, LD-associated proteins, and increased TGs. Furthermore, LDs from large luteal cells were numerous and small; whereas, LDs from small luteal cells were large and less numerous. Isolated LDs contained nearly all of the TGs and cholesteryl esters present in luteal tissue. Isolated luteal LDs were composed primarily of TG, with lesser amounts of cholesteryl esters, diglyceride and other phospholipids. Bovine luteal LDs are distinct from LDs in other bovine tissues, including follicular steroidogenic cells.


Subject(s)
Corpus Luteum/metabolism , Lipid Droplets/chemistry , Lipids/chemistry , Ovary/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/chemistry , Animals , Cattle , Cholesterol Esters/metabolism , Female , Granulosa Cells/metabolism , Lipidomics , Luteal Cells/metabolism , Microscopy, Confocal , Ovulation , Perilipin-1/chemistry , Progesterone/metabolism , Tandem Mass Spectrometry , Theca Cells/metabolism
17.
FASEB J ; 34(8): 10731-10750, 2020 08.
Article in English | MEDLINE | ID: mdl-32614098

ABSTRACT

The corpus luteum is a transient endocrine gland that synthesizes and secretes the steroid hormone, progesterone, which is vital for establishment and maintenance of pregnancy. Luteinizing hormone (LH) via activation of protein kinase A (PKA) acutely stimulates luteal progesterone synthesis via a complex process, converting cholesterol via a series of enzymatic reactions, into progesterone. Lipid droplets in steroidogenic luteal cells store cholesterol in the form of cholesterol esters, which are postulated to provide substrate for steroidogenesis. Early enzymatic studies showed that hormone sensitive lipase (HSL) hydrolyzes luteal cholesterol esters. In this study, we tested whether HSL is a critical mediator of the acute actions of LH on luteal progesterone production. Using LH-responsive bovine small luteal cells our results reveal that LH, forskolin, and 8-Br cAMP-induced PKA-dependent phosphorylation of HSL at Ser563 and Ser660, events known to promote HSL activity. Small molecule inhibition of HSL activity and siRNA-mediated knock down of HSL abrogated LH-induced progesterone production. Moreover, western blotting and confocal microscopy revealed that LH stimulates phosphorylation and translocation of HSL to lipid droplets. Furthermore, LH increased trafficking of cholesterol from the lipid droplets to the mitochondria, which was dependent on both PKA and HSL activation. Taken together, these findings identify a PKA/HSL signaling pathway in luteal cells in response to LH and demonstrate the dynamic relationship between PKA, HSL, and lipid droplets in luteal progesterone synthesis.


Subject(s)
Biological Transport/physiology , Cholesterol/metabolism , Lipid Droplets/metabolism , Luteal Cells/metabolism , Mitochondria/metabolism , Animals , Cattle , Colforsin/metabolism , Corpus Luteum/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Luteinizing Hormone/metabolism , Phosphorylation/physiology , Pregnancy , Progesterone/metabolism , Signal Transduction/physiology
18.
FASEB J ; 34(4): 5299-5316, 2020 04.
Article in English | MEDLINE | ID: mdl-32077149

ABSTRACT

The corpus luteum is an endocrine gland that synthesizes and secretes progesterone. Luteinizing hormone (LH) activates protein kinase A (PKA) signaling in luteal cells, increasing delivery of substrate to mitochondria for progesterone production. Mitochondria maintain a highly regulated equilibrium between fusion and fission in order to sustain biological function. Dynamin-related protein 1 (DRP1), is a key mediator of mitochondrial fission. The mechanism by which DRP1 is regulated in the ovary is largely unknown. We hypothesize that LH via PKA differentially regulates the phosphorylation of DRP1 on Ser616 and Ser637 in bovine luteal cells. In primary cultures of steroidogenic small luteal cells (SLCs), LH, and forskolin stimulated phosphorylation of DRP1 (Ser 637), and inhibited phosphorylation of DRP1 (Ser 616). Overexpression of a PKA inhibitor blocked the effects of LH and forskolin on DRP1 phosphorylation. In addition, LH decreased the association of DRP1 with the mitochondria. Genetic knockdown of the DRP1 mitochondria receptor, and a small molecule inhibitor of DRP1 increased basal and LH-induced progesterone production. Studies with a general Dynamin inhibitor and siRNA knockdown of DRP1 showed that DRP1 is required for optimal LH-induced progesterone biosynthesis. Taken together, the findings place DRP1 as an important target downstream of PKA in steroidogenic luteal cells.


Subject(s)
Corpus Luteum/metabolism , Dynamins/metabolism , Luteinizing Hormone/pharmacology , Mitochondrial Dynamics , Progesterone/biosynthesis , Animals , Cattle , Corpus Luteum/drug effects , Cyclic AMP/metabolism , Dynamins/genetics , Female , Phosphorylation , Signal Transduction
19.
Biol Reprod ; 102(3): 680-692, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31723977

ABSTRACT

Follicular progression during peripuberty is affected by diet. Vascular endothelial growth factor A (VEGFA) induces follicle progression in many species; however, there are limited studies to determine if diet may alter the effects of angiogenic VEGFA165-stimulated follicle progression or antiangiogenic VEGFA165b follicle arrest. We hypothesized that diet affects the magnitude of angiogenic and antiangiogenic VEGFA isoform actions on follicular development through diverse signal transduction pathways. To test this hypothesis, beef heifers in our first trial received Stair-Step (restricted and refeeding) or control diets from 8 to 13 months of age. Ovaries were collected to determine follicle stages, measure vascular gene expression and conduct ovarian cortical cultures. Ovarian cortical cultures were treated with phosphate-buffered saline (control), 50 ng/ml VEGFA165, VEGFA165b, or VEGFA165 + VEGFA165b. The Stair-Step heifers had more primordial follicles (P < 0.0001), greater messenger RNA abundance of vascular markers VE-cadherin (P < 0.0001) and NRP-1 (P < 0.0051) than controls at 13 months of age prior to culture. After culture, VEGFA isoforms had similar effects, independent of diet, where VEGFA165 stimulated and VEGFA165b inhibited VEGFA165-stimulated follicle progression from early primary to antral follicle stages. In vitro cultures were treated with VEGFA isoforms and signal transduction array plates were evaluated. VEGFA165 stimulated expression of genes related to cell cycle, cell proliferation, and growth while VEGFA165b inhibited expression of those genes. Thus, VEGFA isoforms can act independently of diet to alter follicle progression or arrest. Furthermore, follicle progression can be stimulated by VEGFA165 and inhibited by VEGFA165b through diverse signal transduction pathways.


Subject(s)
Diet , Ovarian Follicle/metabolism , Ovary/metabolism , Protein Isoforms/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Cattle , Female , Neovascularization, Physiologic/physiology , Protein Isoforms/genetics , Vascular Endothelial Growth Factor A/genetics
20.
Article in English | MEDLINE | ID: mdl-31849844

ABSTRACT

Anovulation is a major cause of infertility, and it is the major leading reproductive disorder in mammalian females. Without ovulation, an oocyte is not released from the ovarian follicle to be fertilized and a corpus luteum is not formed. The corpus luteum formed from the luteinized somatic follicular cells following ovulation, vasculature cells, and immune cells is critical for progesterone production and maintenance of pregnancy. Follicular theca cells differentiate into small luteal cells (SLCs) that produce progesterone in response to luteinizing hormone (LH), and granulosa cells luteinize to become large luteal cells (LLCs) that have a high rate of basal production of progesterone. The formation and function of the corpus luteum rely on the appropriate proliferation and differentiation of both granulosa and theca cells. If any aspect of granulosa or theca cell luteinization is perturbed, then the resulting luteal cell populations (SLC, LLC, vascular, and immune cells) may be reduced and compromise progesterone production. Thus, many factors that affect the differentiation/lineage of the somatic cells and their gene expression profiles can alter the ability of a corpus luteum to produce the progesterone critical for pregnancy. Our laboratory has identified genes that are enriched in somatic follicular cells and luteal cells through gene expression microarray. This work was the first to compare the gene expression profiles of the four somatic cell types involved in the follicle-to-luteal transition and to support previous immunofluorescence data indicating theca cells differentiate into SLCs while granulosa cells become LLCs. Using these data and incorporating knowledge about the ways in which luteinization can go awry, we can extrapolate the impact that alterations in the theca and granulosa cell gene expression profiles and lineages could have on the formation and function of the corpus luteum. While interactions with other cell types such as vascular and immune cells are critical for appropriate corpus luteum function, we are restricting this review to focus on granulosa, theca, and luteal cells and how perturbations such as androgen excess and inflammation may affect their function and fertility.

SELECTION OF CITATIONS
SEARCH DETAIL
...