Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Oncotarget ; 12(24): 2338-2350, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34853657

ABSTRACT

Prothrombin induced by vitamin K absence II (PIVKA-II) has recently been validated internationally as a diagnostic biomarker for hepatocellular carcinoma (HCC), as part of the GALAD model. However, its role as a treatment response biomarker has been less well explored. We, therefore, undertook a prospective study at a tertiary centre in the UK to evaluate the role of PIVKA-II as a treatment response biomarker in patients with early, intermediate and advanced stage HCC. In a cohort of 141 patients, we found that PIVKA-II levels tracked concordantly with treatment response in the majority of patients, across a range of different treatment modalities. We also found that rises in PIVKA-II levels almost always predated radiological progression. Among AFP non-secretors, PIVKA-II was found to be informative in 60% of cases. In a small cohort of patients undergoing liver transplantation, pre-transplant PIVKA-II levels predicted for microvascular invasion and poorer differentiation. Our results demonstrate the potential utility of PIVKA-II as a treatment response biomarker and in predicting microvascular invasion, in a Western population. PIVKA-II demonstrated improved performance over AFP but, as a single biomarker, its performance was still limited. Further larger prospective studies are recommended to evaluate PIVKA-II as a treatment response biomarker, within the GALAD model.

2.
Br J Cancer ; 124(11): 1759-1776, 2021 05.
Article in English | MEDLINE | ID: mdl-33782566

ABSTRACT

Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/therapy , T-Lymphocytes/transplantation , Animals , Humans , Immune Tolerance/genetics , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/trends , Lymphocytes, Tumor-Infiltrating/physiology , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/physiology
3.
Nat Commun ; 11(1): 2939, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546694

ABSTRACT

There is a limited access to liver transplantation, however, many organs are discarded based on subjective assessment only. Here we report the VITTAL clinical trial (ClinicalTrials.gov number NCT02740608) outcomes, using normothermic machine perfusion (NMP) to objectively assess livers discarded by all UK centres meeting specific high-risk criteria. Thirty-one livers were enroled and assessed by viability criteria based on the lactate clearance to levels ≤2.5 mmol/L within 4 h. The viability was achieved by 22 (71%) organs, that were transplanted after a median preservation time of 18 h, with 100% 90-day survival. During the median follow up of 542 days, 4 (18%) patients developed biliary strictures requiring re-transplantation. This trial demonstrates that viability testing with NMP is feasible and in this study enabled successful transplantation of 71% of discarded livers, with 100% 90-day patient and graft survival; it does not seem to prevent non-anastomotic biliary strictures in livers donated after circulatory death with prolonged warm ischaemia.


Subject(s)
Graft Survival/physiology , Liver Function Tests/methods , Liver Transplantation/methods , Liver/physiology , Organ Preservation/methods , Tissue Donors/statistics & numerical data , Aged , Female , Humans , Liver/metabolism , Male , Middle Aged , Non-Randomized Controlled Trials as Topic , Organ Preservation/statistics & numerical data , Perfusion/methods , Prospective Studies , Survival Analysis , Temperature , Time Factors , Tissue and Organ Harvesting/methods , Tissue and Organ Harvesting/statistics & numerical data
4.
Hepatol Commun ; 2(5): 492-503, 2018 May.
Article in English | MEDLINE | ID: mdl-29761166

ABSTRACT

NI-0801 is a fully human monoclonal antibody against chemokine (C-X-C motif) ligand 10 (CXCL10), which is involved in the recruitment of inflammatory T cells into the liver. The safety and efficacy of NI-0801 was assessed in patients with primary biliary cholangitis. In this open-label phase 2a study, patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid received six consecutive intravenous administrations of NI-0801 (10 mg/kg) every 2 weeks. Patients were followed up for 3 months after the last infusion. Liver function tests, safety assessments, as well as pharmacokinetic and pharmacodynamic parameters were evaluated at different time points throughout the dosing period and the safety follow-up period. Twenty-nine patients were enrolled in the study and were treated with NI-0801. The most frequently reported adverse events included headaches (52%), pruritus (34%), fatigue (24%), and diarrhea (21%). No study drug-related serious adverse events were reported. NI-0801 administration did not lead to a significant reduction in any of the liver function tests assessed at the end of the treatment period (i.e., 2 weeks after final NI-0801 administration) compared to baseline. Conclusion: Despite clear pharmacologic responses in the blood, no therapeutic benefit of multiple administrations of NI-0801 could be demonstrated. The high production rate of CXCL10 makes it difficult to achieve drug levels that lead to sustained neutralization of the chemokine, thus limiting its targetability. (Hepatology Communications 2018;2:492-503).

5.
Gut ; 67(2): 333-347, 2018 02.
Article in English | MEDLINE | ID: mdl-28450389

ABSTRACT

OBJECTIVE: Acute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response. DESIGN: Flow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer-/-) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice. RESULTS: We demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer-/- mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance. CONCLUSIONS: We identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury.


Subject(s)
Liver Failure, Acute/immunology , Liver Failure, Acute/metabolism , Macrophages/metabolism , Secretory Leukocyte Peptidase Inhibitor/pharmacology , c-Mer Tyrosine Kinase/metabolism , Acetaminophen , Adult , Aged , Animals , Case-Control Studies , Female , Gene Expression , Genes, MHC Class II , HLA-DR Antigens/metabolism , Humans , Kupffer Cells/immunology , Kupffer Cells/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/pathology , Macrophages/immunology , Male , Mice , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Neutrophils/physiology , Phenotype , Secretory Leukocyte Peptidase Inhibitor/metabolism , Secretory Leukocyte Peptidase Inhibitor/therapeutic use , Transcriptome , c-Mer Tyrosine Kinase/deficiency , c-Mer Tyrosine Kinase/genetics
6.
BMJ Open ; 7(11): e017733, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29183928

ABSTRACT

INTRODUCTION: The use of marginal or extended criteria donor livers is increasing. These organs carry a greater risk of initial dysfunction and early failure, as well as inferior long-term outcomes. As such, many are rejected due to a perceived risk of use and use varies widely between centres. Ex situ normothermic machine perfusion of the liver (NMP-L) may enable the safe transplantation of organs that meet defined objective criteria denoting their high-risk status and are currently being declined for use by all the UK transplant centres. METHODS AND ANALYSIS: Viability testing and transplantation of marginal livers is an open-label, non-randomised, prospective, single-arm trial designed to determine whether currently unused donor livers can be salvaged and safely transplanted with equivalent outcomes in terms of patient survival. The procured rejected livers must meet predefined criteria that objectively denote their marginal condition. The liver is subjected to NMP-L following a period of static cold storage. Organs metabolising lactate to ≤2.5 mmol/L within 4 hours of the perfusion commencing in combination with two or more of the following parameters-bile production, metabolism of glucose, a hepatic arterial flow rate ≥150 mL/min and a portal venous flow rate ≥500 mL/min, a pH ≥7.30 and/or maintain a homogeneous perfusion-will be considered viable and transplanted into a suitable consented recipient. The coprimary outcome measures are the success rate of NMP-L to produce a transplantable organ and 90-day patient post-transplant survival. ETHICS AND DISSEMINATION: The protocol was approved by the National Research Ethics Service (London-Dulwich Research Ethics Committee, 16/LO/1056), the Medicines and Healthcare Products Regulatory Agency and is endorsed by the National Health Service Blood and Transplant Research, Innovation and Novel Technologies Advisory Group. The findings of this trial will be disseminated through national and international presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: NCT02740608; Pre-results.


Subject(s)
Liver Transplantation , Liver , Organ Preservation/methods , Tissue and Organ Procurement/standards , Feasibility Studies , Humans , Liver/metabolism , Non-Randomized Controlled Trials as Topic , Perfusion/methods , Practice Guidelines as Topic , Prospective Studies , Time Factors , Tissue Survival , Tissue and Organ Procurement/methods , Transplant Recipients
7.
J Immunol ; 199(5): 1672-1681, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28739875

ABSTRACT

Human monocytic myeloid-derived suppressor cells (MO-MDSCs) within the hepatic compartment suppress inflammation and impair immune surveillance in liver cancer. It is currently not known whether recruitment of MO-MDSCs from blood via hepatic sinusoidal endothelium (HSEC) contributes to their enrichment within the hepatic compartment. We compared the transmigratory potential of MO-MDSCs and monocytes after adhesion to hepatic endothelial monolayers in flow-based assays that mimic in vivo shear stress in the sinusoids. Despite comparable binding to HSEC monolayers, proportionally fewer MO-MDSCs underwent transendothelial migration, indicating that the final steps of extravasation, where actin polymerization plays an important role, are impaired in MO-MDSCs. In this article, we found reduced levels of CD13 on MO-MDSCs, which has recently been reported to control cell motility in monocytes, alongside reduced VLA-4 expression, an integrin predominantly involved in adherence to the apical side of the endothelium. CD13 and VLA-4 blocking and activating Abs were used in flow-based adhesion assays, live-cell imaging of motility, and actin polymerization studies to confirm a role for CD13 in impaired MO-MDSC transmigration. These findings indicate that CD13 significantly contributes to tissue infiltration by MO-MDSCs and monocytes, thereby contributing to the pathogenesis of hepatic inflammation.


Subject(s)
CD13 Antigens/metabolism , Endothelium, Corneal/physiology , Hemochromatosis/immunology , Hepatitis/immunology , Liver/immunology , Myeloid-Derived Suppressor Cells/immunology , Transendothelial and Transepithelial Migration , Actins/metabolism , Antibodies, Blocking/pharmacology , CD13 Antigens/genetics , CD13 Antigens/immunology , Cell Adhesion , Cell Movement , Cells, Cultured , Down-Regulation , Humans , Integrin alpha4beta1/genetics , Integrin alpha4beta1/immunology , Integrin alpha4beta1/metabolism
8.
Hepatology ; 63(1): 233-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26473398

ABSTRACT

UNLABELLED: Monocytes are versatile cells that can fulfill proinflammatory and anti-inflammatory functions when recruited to the liver. Recruited monocytes differentiate into tissue macrophages and dendritic cells, which sample antigens and migrate to lymph nodes to elicit T-cell responses. The signals that determine monocyte differentiation and the role of hepatic sinusoidal endothelial cells (HSECs) in this process are poorly understood. HSECs are known to modulate T-cell activation, which led us to investigate whether transendothelial migration of monocytes across HSECs influences their phenotype and function. Subsets of blood-derived monocytes were allowed to transmigrate across human HSECs into a collagen matrix. Most migrated cells remained in the subendothelial matrix, but ~10% underwent spontaneous basal to apical transendothelial migration. The maturation, cytokine secretion, and T-cell stimulatory capacity of reverse transmigrating (RT) and subendothelial (SE) monocytes were compared. SE monocytes were mainly CD16(-) , whereas 75%-80% of RT monocytes were CD16(+) . SE monocytes derived from the CD14(++) CD16(-) subset and exhibited high phagocytic activity, whereas RT monocytes originated from CD14(++) CD16(+) and CD14(+) CD16(++) monocytes, displayed an immature dendritic cell-like phenotype (CD11c(pos) HLA-DR(pos) CD80lo CD86lo ), and expressed higher levels of chemokine (C-C motif) receptor 8. Consistent with a dendritic cell phenotype, RT monocytes secreted inflammatory cytokines and induced antigen-specific CD4(+) T-cell activation. In contrast, SE monocytes suppressed T-cell proliferation and activation and exhibited endotoxin tolerance. Transcriptome analysis underscored the functional differences between SE and RT monocytes. CONCLUSIONS: Migration across HSECs shapes the subsequent fate of monocytes, giving rise to anergic macrophage-like cells in tissue and the release of immunocompetent pre-dendritic cells into the circulation.


Subject(s)
Cell Differentiation , Immune Tolerance , Liver/cytology , Liver/immunology , Monocytes/physiology , Transendothelial and Transepithelial Migration/physiology , Cells, Cultured , Endothelium/cytology , Humans
9.
J Immunol ; 194(6): 2578-86, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25667417

ABSTRACT

Myeloid-derived suppressor cells (MDSC) represent a unique cell population with distinct immunosuppressive properties that have been demonstrated to shape the outcome of malignant diseases. Recently, human hepatic stellate cells (HSC) have been reported to induce monocytic-MDSC from mature CD14(+) monocytes in a contact-dependent manner. We now report a novel and unexpected mechanism by which CD14(+)HLADR(low/-) suppressive cells are induced by catalase-mediated depletion of hydrogen peroxide (H2O2). Incubation of CD14(+) monocytes with catalase led to a significant induction of functional MDSC compared with media alone, and H2O2 levels inversely correlated with MDSC frequency (r = -0.6555, p < 0.05). Catalase was detected in primary HSC and a stromal cell line, and addition of the competitive catalase inhibitor hydroxylamine resulted in a dose-dependent impairment of MDSC induction and concomitant increase of H2O2 levels. The NADPH-oxidase subunit gp91 was significantly increased in catalase-induced MDSC as determined by quantitative PCR outlining the importance of oxidative burst for the induction of MDSC. These findings represent a so far unrecognized link between immunosuppression by MDSC and metabolism. Moreover, this mechanism potentially explains how stromal cells can induce a favorable immunological microenvironment in the context of tissue oxidative stress such as occurs during cancer therapy.


Subject(s)
Catalase/immunology , Hepatic Stellate Cells/immunology , Hydrogen Peroxide/immunology , Myeloid Cells/immunology , Blotting, Western , Catalase/antagonists & inhibitors , Catalase/metabolism , Cell Communication/immunology , Cell Line , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Flow Cytometry , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydroxylamine/pharmacology , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Monocytes/immunology , Monocytes/metabolism , Myeloid Cells/metabolism , NADPH Oxidase 2 , NADPH Oxidases/genetics , NADPH Oxidases/immunology , NADPH Oxidases/metabolism , Reverse Transcriptase Polymerase Chain Reaction
10.
J Clin Invest ; 125(2): 501-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25562318

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases.


Subject(s)
Amine Oxidase (Copper-Containing)/blood , Cell Adhesion Molecules/blood , Gene Expression Regulation, Enzymologic , Leukocytes/enzymology , Liver Cirrhosis/enzymology , Non-alcoholic Fatty Liver Disease/enzymology , Adult , Animals , Cell Line , Cell Movement , Chronic Disease , Cohort Studies , Disease Models, Animal , Female , Hepatitis/enzymology , Hepatitis/pathology , Hepatitis/therapy , Humans , Inflammation/enzymology , Inflammation/pathology , Inflammation/therapy , Leukocytes/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Male , Mice , Mice, Knockout , Middle Aged , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy , Oxidative Stress , Reactive Oxygen Species/metabolism
11.
Gastroenterology ; 148(3): 603-615.e14, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25479139

ABSTRACT

BACKGROUND & AIMS: Characteristics of decompensated cirrhosis and acute-on-chronic liver failure (ACLF) include susceptibility to infection, immuneparesis, and monocyte dysfunction. MER receptor tyrosine kinase (MERTK) is expressed by monocytes and macrophages and contributes to down-regulation of innate immune responses. We investigated whether MERTK expression is altered on monocytes from patients with liver failure. METHODS: We analyzed blood and liver samples collected from patients admitted to the liver intensive therapy unit at King's College Hospital in London from December 2012 through July 2014. Patients had either ACLF (n = 41), acute decompensation of cirrhosis without ACLF (n = 9), cirrhosis without decompensation (n = 17), or acute liver failure (n = 23). We also analyzed samples from healthy individuals (controls, n = 29). We used flow cytometry to determine the level of innate immune function, and associated the findings with disease severity. We developed an assay to measure recruitment and migration of immune cells from the tissue parenchyma. Immunohistochemistry and confocal microscopy were used to determine levels of MERTK in bone marrow, liver, and lymph node tissues. We performed immunophenotype analyses and measured the production of tumor necrosis factor and interleukin 6 and intracellular killing of Escherichia coli by monocytes and peritoneal macrophages incubated with lipopolysaccharide, with or without an inhibitor of MERTK (UNC569). RESULTS: The number of monocytes and macrophages that expressed MERTK was greatly increased in the circulation, livers, and lymph nodes of patients with ACLF, compared with patients with stable cirrhosis and controls. MERTK expression (mean fluorescence intensity) correlated with the severity of hepatic and extrahepatic disease and systemic inflammatory responses. Based on immunophenotype, migration, and functional analyses, MERTK-expressing monocytes migrate across the endothelia to localize into tissue sites and regional lymph nodes. Expression of MERTK reduced the response of cultured monocytes to lipopolysaccharide; the addition of UNC569 restored production of inflammatory cytokines in response to lipopolysaccharide. CONCLUSIONS: Patients with ACLF have increased numbers of immunoregulatory monocytes and macrophages that express MERTK and suppress the innate immune response to microbes. The number of these cells correlates with disease severity and the inflammatory response. MERTK inhibitors restore production of inflammatory cytokines by immune cells from patients with ACLF, and might be developed to increase the innate immune response in these patients.


Subject(s)
Acute-On-Chronic Liver Failure/metabolism , End Stage Liver Disease/metabolism , Immunity, Innate/immunology , Liver Cirrhosis/metabolism , Liver Failure, Acute/metabolism , Liver/metabolism , Lymph Nodes/metabolism , Macrophages/metabolism , Monocytes/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Acute-On-Chronic Liver Failure/immunology , Adult , Aged , End Stage Liver Disease/immunology , Female , Humans , Immunity, Innate/drug effects , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/immunology , Liver Cirrhosis/immunology , Liver Failure, Acute/immunology , Lymph Nodes/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/immunology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/immunology , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , c-Mer Tyrosine Kinase
12.
Front Immunol ; 5: 344, 2014.
Article in English | MEDLINE | ID: mdl-25101086

ABSTRACT

Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists ("phosphoantigens") and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1-3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>10(7) cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αßT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8(+) αßT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αßT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients with various cancers.

13.
MethodsX ; 1: 168-174, 2014.
Article in English | MEDLINE | ID: mdl-25729646

ABSTRACT

The suppression assay is a commonly performed assay, measuring the ability of regulatory T cells (Treg) to suppress T cell proliferation. Most frequently, Treg are obtained from the peripheral blood or spleen. Lower yields are obtained by isolation from other tissues, rendering downstream suppression assays challenging to perform. Furthermore, the importance of suppressive subpopulations of Treg favours their isolation by fluorescent-activated cell sorting. Here we describe a method to isolate Treg from human tissues, using colorectal cancer tissue as an example. Treg suppressive capacity was further examined by expression of CCR5 to demonstrate the ability of our method to assess the suppressive capacity of regulatory T cell subsets. To optimise the standard suppression assay to achieve our research aims, the following modifications were made: Treg, isolated from tissues, were sorted directly into a well-plate.Responder T cells, which had been fluorescently-labelled prior to sorting, were added directly into the well-plate.Human Treg Suppression Inspector beads (Miltenyi Biotec Ltd, UK) provided a polyclonal stimulus for proliferation and were added to each well at a bead:lymphocyte ratio of 1:2. This method quantified the suppression of responder T cell proliferation by small numbers of strictly-defined Treg populations isolated from tissues.

14.
Hepatology ; 59(4): 1320-30, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24259385

ABSTRACT

UNLABELLED: Macrophages are critical components of the innate immune response in the liver. Chronic hepatitis C is associated with immune infiltration and the infected liver shows a significant increase in total macrophage numbers; however, their role in the viral life cycle is poorly understood. Activation of blood-derived and intrahepatic macrophages with a panel of Toll-like receptor agonists induce soluble mediators that promote hepatitis C virus (HCV) entry into polarized hepatoma cells. We identified tumor necrosis factor α (TNF-α) as the major cytokine involved in this process. Importantly, this effect was not limited to HCV; TNF-α increased the permissivity of hepatoma cells to infection by Lassa, measles and vesicular stomatitis pseudoviruses. TNF-α induced a relocalization of tight junction protein occludin and increased the lateral diffusion speed of HCV receptor tetraspanin CD81 in polarized HepG2 cells, providing a mechanism for their increased permissivity to support HCV entry. High concentrations of HCV particles could stimulate macrophages to express TNF-α, providing a direct mechanism for the virus to promote infection. CONCLUSION: This study shows a new role for TNF-α to increase virus entry and highlights the potential for HCV to exploit existing innate immune responses in the liver to promote de novo infection events.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepacivirus/physiology , Liver Neoplasms/virology , Macrophage Activation/physiology , Macrophages/physiology , Tumor Necrosis Factor-alpha/physiology , Virus Internalization , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Polarity/physiology , Hep G2 Cells , Hepatitis C/metabolism , Hepatitis C/physiopathology , Humans , Immunity, Innate/physiology , Interleukin-1beta/physiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Occludin/metabolism , Tetraspanin 28/metabolism , Tight Junctions/physiology
15.
Hepatology ; 57(1): 385-98, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22911542

ABSTRACT

UNLABELLED: Liver fibrosis is a wound healing response to chronic liver injury and inflammation in which macrophages and infiltrating monocytes participate in both the development and resolution phase. In humans, three monocyte subsets have been identified: the classical CD14++CD16-, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes. We studied the phenotype and function of these monocyte subsets in peripheral blood and liver tissue from patients with chronic inflammatory and fibrotic liver diseases. The frequency of intrahepatic monocytes increased in disease compared with control liver tissue, and in both nondiseased and diseased livers there was a higher frequency of CD14++CD16+ cells with blood. Our data suggest two nonexclusive mechanisms of CD14++CD16+ accumulation in the inflamed liver: (1) recruitment from blood, because more than twice as many CD14++CD16+ monocytes underwent transendothelial migration through hepatic endothelial cells compared with CD14++CD16- cells; and (2) local differentiation from CD14++CD16- classical monocytes in response to transforming growth factor ß and interleukin (IL)-10. Intrahepatic CD14++CD16+ cells expressed both macrophage and dendritic cell markers but showed high levels of phagocytic activity, antigen presentation, and T cell proliferation and secreted proinflammatory (tumor necrosis factor α, IL-6, IL-8, IL-1ß) and profibrogenic cytokines (IL-13), chemokines (CCL1, CCL2, CCL3, CCL5), and growth factors (granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor), consistent with a role in the wound healing response. CONCLUSION: Intermediate CD14++CD16+ monocytes preferentially accumulate in chronically inflamed human liver as a consequence of enhanced recruitment from blood and local differentiation from classical CD14++CD16- monocytes. Their phagocytic potential and ability to secrete inflammatory and profibrogenic cytokines suggests they play an important role in hepatic fibrogenesis.


Subject(s)
Liver Diseases/immunology , Monocytes/pathology , Cytokines/metabolism , GPI-Linked Proteins/metabolism , Humans , Lipopolysaccharide Receptors/metabolism , Liver Cirrhosis/immunology , Monocytes/physiology , Phenotype , Receptors, IgG/metabolism
16.
PLoS One ; 7(1): e30867, 2012.
Article in English | MEDLINE | ID: mdl-22295117

ABSTRACT

BACKGROUND: Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis. METHODS: Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2',7'-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay. RESULTS: Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis. CONCLUSIONS: CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.


Subject(s)
Blood Platelets/metabolism , CD40 Antigens/metabolism , CD40 Ligand/pharmacology , Hepatocytes/cytology , Hepatocytes/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , CD40 Ligand/chemistry , Cell Hypoxia/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fas Ligand Protein/metabolism , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Intracellular Space/drug effects , Intracellular Space/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , NADP/metabolism , NADPH Oxidases/metabolism , Necrosis/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Solubility , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Autophagy ; 8(4): 545-58, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22302008

ABSTRACT

The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes.


Subject(s)
Apoptosis , Autophagy , Cytoprotection , Hepatocytes/pathology , Oxidative Stress , Cell Hypoxia , Cell Separation , Cell Size , Cells, Cultured , Hepatocytes/enzymology , Humans , Intracellular Space/metabolism , Liver Diseases/pathology , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Models, Biological , NADPH Oxidases/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism
18.
PLoS One ; 6(3): e18222, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21479238

ABSTRACT

Successful and consistent isolation of primary human hepatocytes remains a challenge for both cell-based therapeutics/transplantation and laboratory research. Several centres around the world have extensive experience in the isolation of human hepatocytes from non-diseased livers obtained from donor liver surplus to surgical requirement or at hepatic resection for tumours. These livers are an important but limited source of cells for therapy or research. The capacity to isolate cells from diseased liver tissue removed at transplantation would substantially increase availability of cells for research. However no studies comparing the outcome of human hepatocytes isolation from diseased and non-diseased livers presently exist. Here we report our experience isolating human hepatocytes from organ donors, non-diseased resected liver and cirrhotic tissue. We report the cell yields and functional qualities of cells isolated from the different types of liver and demonstrate that a single rigorous protocol allows the routine harvest of good quality primary hepatocytes from the most commonly accessible human liver tissue samples.


Subject(s)
Cell Separation/methods , Hepatocytes/pathology , Liver/pathology , Cell Count , Cell Survival , Cells, Cultured , Fatty Liver/pathology , Hepatectomy , Humans , Immunohistochemistry , Perfusion , Time Factors , Tissue Donors
19.
FEBS Lett ; 585(6): 935-41, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21356211

ABSTRACT

Hypoxia and hypoxia-reoxygenation (H-R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H-R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H-R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies.


Subject(s)
Cell Size , Hepatocytes/drug effects , Hepatocytes/metabolism , Oxygen/pharmacology , Apoptosis/drug effects , Cell Hypoxia , Cells, Cultured , Flow Cytometry , Hepatocytes/cytology , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Necrosis , Reactive Oxygen Species/metabolism , Rotenone/pharmacology , Uncoupling Agents/pharmacology
20.
Liver Transpl ; 16(11): 1303-13, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21031546

ABSTRACT

Increasing evidence shows that reactive oxygen species (ROS) may be critical mediators of liver damage during the relative hypoxia of ischemia/reperfusion injury (IRI) associated with transplant surgery or of the tissue microenvironment created as a result of chronic hepatic inflammation or infection. Much work has been focused on Kupffer cells or liver resident macrophages with respect to the generation of ROS during IRI. However, little is known about the contribution of endogenous hepatocyte ROS production or its potential impact on the parenchymal cell death associated with IRI and chronic hepatic inflammation. For the first time, we show that human hepatocytes isolated from nondiseased liver tissue and human hepatocytes isolated from diseased liver tissue exhibit marked differences in ROS production in response to hypoxia/reoxygenation (H-R). Furthermore, several different antioxidants are able to abrogate hepatocyte ROS-induced cell death during hypoxia and H-R. These data provide clear evidence that endogenous ROS production by mitochondria and nicotinamide adenine dinucleotide phosphate oxidase drives human hepatocyte apoptosis and necrosis during hypoxia and H-R and may therefore play an important role in any hepatic diseases characterized by a relatively hypoxic liver microenvironment. In conclusion, these data strongly suggest that hepatocytes and hepatocyte-derived ROS are active participants driving hepatic inflammation. These novel findings highlight important functional/metabolic differences between hepatocytes isolated from normal donor livers, hepatocytes isolated from normal resected tissue obtained during surgery for malignant neoplasms, and hepatocytes isolated from livers with end-stage disease. Furthermore, the targeting of hepatocyte ROS generation with antioxidants may offer therapeutic potential for the adjunctive treatment of IRI and chronic inflammatory liver diseases.


Subject(s)
Hepatocytes/metabolism , Hypoxia/metabolism , Liver/metabolism , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Annexin A5/analysis , Antioxidants/pharmacology , Apoptosis/drug effects , Female , Flow Cytometry , Hepatocytes/pathology , Humans , Hypoxia/pathology , Inflammation/drug therapy , Kupffer Cells/metabolism , Kupffer Cells/pathology , Liver/pathology , Liver Diseases/drug therapy , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Mitochondria/metabolism , Models, Biological , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...