Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
2.
Eur J Neurol ; 30(9): 2884-2898, 2023 09.
Article in English | MEDLINE | ID: mdl-37326003

ABSTRACT

BACKGROUND AND PURPOSE: Hormonal replacement therapy (HRT) is used for symptomatic treatment of menopause. Some evidence suggests a proconvulsant effect of estrogen and an anticonvulsant role of progesterone. Thus, the use of exogenous sex steroid hormones might influence the course of epilepsy in peri- and postmenopausal women with epilepsy (WWE). We conducted a systematic review on the impact of HRT on the frequency of seizures of WWE. METHODS: PubMed and Scopus were searched for articles published from inception until August 2022. Abstracts from the past 5 years from the European Academy of Neurology and European Epilepsy Congresses were also reviewed. Article reference lists were screened, and relevant articles were retrieved for consultation. Interventional and observational studies on WWE and animal models of estrogen deficiency were included. Critical appraisal was performed using the revised Cochrane risk-of-bias tool for randomized trials and ROBINS-E tool. RESULTS: Of 497 articles screened, 13 studies were included, including three human studies. One cross-sectional study showed a decrease in seizure frequency in WWE using combined HRT, a case-control study showed an increase in comparison with controls, and a randomized clinical trial found a dose-dependent increase in seizure frequency in women with focal epilepsy taking combined HRT. Ten studies addressing the impact of HRT in rat models were also included, which showed conflicting results. CONCLUSIONS: There is scarce evidence of the impact of HRT in WWE. Further studies should evaluate the harmful potential, and prospective registries are needed for monitoring this population.


Subject(s)
Epilepsy , Postmenopause , Female , Humans , Animals , Rats , Case-Control Studies , Prospective Studies , Cross-Sectional Studies , Epilepsy/drug therapy , Seizures/drug therapy , Estrogens/pharmacology , Estrogens/therapeutic use , Gonadal Steroid Hormones/pharmacology , Gonadal Steroid Hormones/therapeutic use , Randomized Controlled Trials as Topic
3.
Cell Rep Med ; 4(5): 101047, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37196628

ABSTRACT

AMPA receptors' synaptic plasticity is involved in epileptogenesis. In this issue, Eiro et al.1 demonstrate that Hebbian plasticity is responsible for increased AMPAR in focal seizures, while homeostatic plasticity induces the reduction of AMPAR in generalized onset seizures.


Subject(s)
Receptors, AMPA , Synapses , Neuronal Plasticity , Homeostasis
4.
Neurobiol Dis ; 181: 106106, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37001613

ABSTRACT

Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-ß (Aß) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aß42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aß induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.


Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anticonvulsants/pharmacology , Lamotrigine/adverse effects , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , Seizures/pathology , Mice, Transgenic , Disease Models, Animal , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/prevention & control
7.
iScience ; 24(12): 103438, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34901791

ABSTRACT

Brain organoids are in vitro three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10-20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs). Here, we developed, for the first time, a highly standardized, reproducible, and fast (5 weeks) murine brain organoid model starting from embryonic neural stem cells. We obtained brain organoids, which progressively differentiated and self-organized into 3D networks of functional neurons with dorsal forebrain phenotype. Furthermore, by adding the morphogen WNT3a, we generated brain organoids with specific hippocampal region identity. Overall, our results showed the establishment of a fast, robust and reproducible murine 3D in vitro brain model that may represent a useful tool for high-throughput drug screening and disease modeling.

8.
Adv Sci (Weinh) ; 8(10): 2002693, 2021 05.
Article in English | MEDLINE | ID: mdl-34026431

ABSTRACT

Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.


Subject(s)
Brain/physiology , Deep Brain Stimulation/methods , Equipment Design/methods , Microelectrodes , Nervous System Diseases/therapy , Wireless Technology/instrumentation , Animals , Humans , Neurosciences/methods , Neurosciences/trends
9.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917911

ABSTRACT

Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.


Subject(s)
Disease Susceptibility , Epilepsy, Temporal Lobe/etiology , Epilepsy, Temporal Lobe/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Astrocytes/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Oligodendroglia/metabolism , Receptors, GABA/metabolism , Receptors, Ionotropic Glutamate/metabolism , Synaptic Transmission , gamma-Aminobutyric Acid/metabolism
10.
Cereb Cortex ; 30(4): 2229-2249, 2020 04 14.
Article in English | MEDLINE | ID: mdl-33676371

ABSTRACT

Genetically distinct GABAergic interneuron subtypes play diverse roles in cortical circuits. Previous studies revealed that microRNAs (miRNAs) are differentially expressed in cortical interneuron subtypes, and are essential for the normal migration, maturation, and survival of medial ganglionic eminence-derived interneuron subtypes. How miRNAs function in vasoactive intestinal peptide expressing (VIP+) interneurons derived from the caudal ganglionic eminence remains elusive. Here, we conditionally removed Dicer in postmitotic VIP+ interneurons to block miRNA biogenesis. We found that the intrinsic and synaptic properties of VIP+ interneurons and pyramidal neurons were concordantly affected prior to a progressive loss of VIP+ interneurons. In vivo recording further revealed elevated cortical local field potential power. Mutant mice had a shorter life span but exhibited better spatial working memory and motor coordination. Our results demonstrate that miRNAs are indispensable for the function and survival of VIP+ interneurons, and highlight a key role of VIP+ interneurons in cortical circuits.


Subject(s)
Cerebral Cortex/metabolism , Interneurons/metabolism , MicroRNAs/antagonists & inhibitors , Nerve Net/metabolism , Vasoactive Intestinal Peptide/deficiency , Animals , Cerebral Cortex/growth & development , Male , Maze Learning/physiology , Mice , Mice, Transgenic , MicroRNAs/genetics , Nerve Net/growth & development , Vasoactive Intestinal Peptide/genetics
11.
Front Pharmacol ; 8: 676, 2017.
Article in English | MEDLINE | ID: mdl-29018345

ABSTRACT

Ghrelin, des-acyl ghrelin and other related peptides possess anticonvulsant activities. Although ghrelin and cognate peptides were shown to physiologically regulate only the ghrelin receptor, some of them were pharmacologically proved to activate the peroxisome proliferator-activated receptor gamma (PPARγ) through stimulation of the scavenger receptor CD36 in macrophages. In our study, we challenged the hypothesis that PPARγ could be involved in the anticonvulsant effects of EP-80317, a ghrelin receptor antagonist. For this purpose, we used the PPARγ antagonist GW9662 to evaluate the modulation of EP-80317 anticonvulsant properties in two different models. Firstly, the anticonvulsant effects of EP-80317 were studied in rats treated with pilocarpine to induce status epilepticus (SE). Secondly, the anticonvulsant activity of EP-80317 was ascertained in the repeated 6-Hz corneal stimulation model in mice. Behavioral and video electrocorticographic (ECoG) analyses were performed in both models. We also characterized levels of immunoreactivity for PPARγ in the hippocampus of 6-Hz corneally stimulated mice. EP-80317 predictably antagonized seizures in both models. Pretreatment with GW9662 counteracted almost all EP-80317 effects both in mice and rats. Only the effects of EP-80317 on power spectra of ECoGs recorded during repeated 6-Hz corneal stimulation were practically unaffected by GW9662 administration. Moreover, GW9662 alone produced a decrease in the latency of tonic-clonic seizures and accelerated the onset of SE in rats. Finally, in the hippocampus of mice treated with EP-80317 we found increased levels of PPARγ immunoreactivity. Overall, these results support the hypothesis that PPARγ is able to modulate seizures and mediates the anticonvulsant effects of EP-80317.

12.
Neuron ; 92(6): 1337-1351, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27939580

ABSTRACT

A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult. Transient early blockade of miR-101 induces long-lasting hyper-excitability and persistent memory deficits. Using target site blockers in vivo, we identify multiple developmental programs regulated in parallel by miR-101 to achieve balanced networks. Repression of one target, NKCC1, initiates the switch in γ-aminobutyric acid (GABA) signaling, limits early spontaneous activity, and constrains dendritic growth. Kif1a and Ank2 are targeted to prevent excessive synapse formation. Simultaneous de-repression of these three targets completely phenocopies major dysfunctions produced by miR-101 blockade. Our results provide new mechanistic insight into brain development and suggest novel candidates for therapeutic intervention.


Subject(s)
Brain/metabolism , Gene Expression Regulation, Developmental/genetics , MicroRNAs/genetics , Animals , Ankyrins/genetics , Ankyrins/metabolism , Behavior, Animal , Brain/growth & development , Dendrites , Kinesins/genetics , Kinesins/metabolism , Mice , Nerve Net/growth & development , Nerve Net/metabolism , Neural Pathways/growth & development , Neural Pathways/metabolism , Patch-Clamp Techniques , Polymerase Chain Reaction , Sequence Analysis, RNA , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , gamma-Aminobutyric Acid/metabolism
13.
Glia ; 64(8): 1350-62, 2016 08.
Article in English | MEDLINE | ID: mdl-27246930

ABSTRACT

Activated microglia, astrogliosis, expression of pro-inflammatory cytokines, blood brain barrier (BBB) leakage and peripheral immune cell infiltration are features of mesial temporal lobe epilepsy. Numerous studies correlated the expression of pro-inflammatory cytokines with the activated morphology of microglia, attributing them a pro-epileptogenic role. However, microglia and myeloid cells such as macrophages have always been difficult to distinguish due to an overlap in expressed cell surface molecules. Thus, the detrimental role in epilepsy that is attributed to microglia might be shared with myeloid infiltrates. Here, we used a FACS-based approach to discriminate between microglia and myeloid infiltrates isolated from the hippocampus 24 h and 96 h after status epilepticus (SE) in pilocarpine-treated CD1 mice. We observed that microglia do not express MHCII whereas myeloid infiltrates express high levels of MHCII and CD40 96 h after SE. This antigen-presenting cell phenotype correlated with the presence of CD4(pos) T cells. Moreover, microglia only expressed TNFα 24 h after SE while myeloid infiltrates expressed high levels of IL-1ß and TNFα. Immunofluorescence showed that astrocytes but not microglia expressed IL-1ß. Myeloid infiltrates also expressed matrix metalloproteinase (MMP)-9 and 12 while microglia only expressed MMP-12, suggesting the involvement of both cell types in the BBB leakage that follows SE. Finally, both cell types expressed the phagocytosis receptor Axl, pointing to phagocytosis of apoptotic cells as one of the main functions of microglia. Our data suggests that, during early epileptogenesis, microglia from the hippocampus remain rather immune supressed whereas myeloid infiltrates display a strong inflammatory profile. GLIA 2016 GLIA 2016;64:1350-1362.


Subject(s)
Hippocampus/immunology , Microglia/immunology , Myeloid Cells/immunology , Status Epilepticus/immunology , Animals , Astrocytes/immunology , Astrocytes/pathology , CD40 Antigens/metabolism , Disease Models, Animal , Hippocampus/pathology , Interleukin-1beta/metabolism , Male , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase 9 , Mice , Microglia/pathology , Myeloid Cells/pathology , Pilocarpine , Piriform Cortex/immunology , Piriform Cortex/pathology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Status Epilepticus/pathology , Axl Receptor Tyrosine Kinase
14.
PLoS One ; 10(11): e0141221, 2015.
Article in English | MEDLINE | ID: mdl-26555229

ABSTRACT

Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.


Subject(s)
Basolateral Nuclear Complex/metabolism , Cornea/physiopathology , Electric Stimulation/adverse effects , Epilepsy, Complex Partial/etiology , Epilepsy, Generalized/etiology , Hippocampus/physiopathology , Nerve Tissue Proteins/biosynthesis , Proto-Oncogene Proteins c-fos/biosynthesis , Animals , Basolateral Nuclear Complex/physiopathology , Disease Models, Animal , Electrodes, Implanted , Electroencephalography , Epilepsy, Complex Partial/genetics , Epilepsy, Complex Partial/physiopathology , Epilepsy, Generalized/genetics , Epilepsy, Generalized/physiopathology , Epilepsy, Tonic-Clonic/etiology , Epilepsy, Tonic-Clonic/genetics , Epilepsy, Tonic-Clonic/physiopathology , Gene Expression Regulation , Male , Mice , Microglia/pathology , Nerve Net/physiopathology , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/pathology , Phenotype , Proto-Oncogene Proteins c-fos/genetics , Severity of Illness Index , Single-Blind Method , Video Recording
15.
PLoS One ; 8(8): e72716, 2013.
Article in English | MEDLINE | ID: mdl-24015271

ABSTRACT

In models of status epilepticus ghrelin displays neuroprotective effects mediated by the growth hormone secretagogue-receptor 1a (GHS-R1a). This activity may be explained by anticonvulsant properties that, however, are controversial. We further investigated neuroprotection and the effects on seizures by comparing ghrelin with a more effective GHS-R1a agonist, JMV-1843. Rats were treated either with ghrelin, JMV-1843 or saline 10 min before pilocarpine, which was used to induce status epilepticus. Status epilepticus, developed in all rats, was attenuated by diazepam. No differences were observed among the various groups in the characteristics of pilocarpine-induced seizures. In saline group the area of lesion, characterized by lack of glial fibrillary acidic protein immunoreactivity, was of 0.45 ± 0.07 mm(2) in the hippocampal stratum lacunosum-moleculare, and was accompanied by upregulation of laminin immunostaining, and by increased endothelin-1 expression. Both ghrelin (P<0.05) and JMV-1843 (P<0.01) were able to reduce the area of loss in glial fibrillary acidic protein immunostaining. In addition, JMV-1843 counteracted (P<0.05) the changes in laminin and endothelin-1 expression, both increased in ghrelin-treated rats. JMV-1843 was able to ameliorate neuronal survival in the hilus of dentate gyrus and medial entorhinal cortex layer III (P<0.05 vs saline and ghrelin groups). These results demonstrate diverse protective effects of growth hormone secretagogues in rats exposed to status epilepticus.


Subject(s)
Ghrelin/pharmacology , Muscarinic Agonists/adverse effects , Oligopeptides/pharmacology , Pilocarpine/adverse effects , Status Epilepticus , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Endothelin-1/biosynthesis , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Indoles , Male , Muscarinic Agonists/pharmacology , Pilocarpine/pharmacology , Rats , Rats, Sprague-Dawley , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/pathology , Status Epilepticus/prevention & control , Tryptophan/analogs & derivatives
16.
Front Cell Neurosci ; 7: 46, 2013.
Article in English | MEDLINE | ID: mdl-23630463

ABSTRACT

Young, but not adult, fragile X mental retardation gene (Fmr1) knockout (KO) mice display audiogenic seizures (AGS) that can be prevented by inhibiting extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation. In order to identify the cerebral regions involved in these phenomena, we characterized the response to AGS in Fmr1 KO mice and wild type (WT) controls at postnatal day (P) 45 and P90. To characterize the diverse response to AGS in various cerebral regions, we evaluated the activity markers FosB/ΔFosB and phosphorylated ERK1/2 (p-ERK1/2). Wild running (100% of tested mice) followed by clonic/tonic seizures (30%) were observed in P45 Fmr1 KO mice, but not in WT mice. In P90 Fmr1 KO mice, wild running was only present in 25% of tested animals. Basal FosB/ΔFosB immunoreactivity was higher (P < 0.01 vs. WT) in the CA1 and subiculum of P45 Fmr1 KO mice. Following the AGS test, FosB/ΔFosB expression consistently increased in most of the analyzed regions in both groups at P45, but not at P90. Interestingly, FosB/ΔFosB immunoreactivity was significantly higher in P45 Fmr1 KO mice in the medial geniculate body (P < 0.05 vs. WT) and CA3 (P < 0.01). Neurons presenting with immunopositivity to p-ERK1/2 were more abundant in the subiculum of Fmr1 KO mice in control condition (P < 0.05 vs. WT, in both age groups). In this region, p-ERK1/2-immunopositive cells significantly decreased (-75%, P < 0.01) in P90 Fmr1 KO mice exposed to the AGS test, but no changes were found in P45 mice or in other brain regions. In both age groups of WT mice, p-ERK1/2-immunopositive cells increased in the subiculum after exposure to the acoustic test. Our findings illustrate that FosB/ΔFosB markers are overexpressed in the medial geniculate body and CA3 in Fmr1 KO mice experiencing AGS, and that p-ERK1/2 is markedly decreased in the subiculum of Fmr1 KO mice resistant to AGS induction. These findings suggest that resilience to AGS is associated with dephosphorylation of p-ERK1/2 in the subiculum of mature Fmr1 KO mice.

17.
Cereb Cortex ; 21(7): 1574-92, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21112931

ABSTRACT

Human posttraumatic epilepsy (PTE) is highly heterogeneous, ranging from mild remitting to progressive disabling forms. PTE results in simple partial, complex partial, and secondarily generalized seizures with a wide spectrum of durations and semiologies. PTE variability is thought to depend on the heterogeneity of head injury and patient's age, gender, and genetic background. To better understand the role of these factors, we investigated the seizures resulting from calibrated fluid percussion injury (FPI) to adolescent male Sprague-Dawley rats with video electrocorticography. We show that PTE incidence and the frequency and severity of chronic seizures depend on the location and severity of FPI. The frontal neocortex was more prone to epileptogenesis than the parietal and occipital, generating earlier, longer, and more frequent partial seizures. A prominent limbic focus developed in most animals, regardless of parameters of injury. Remarkably, even with carefully controlled injury parameters, including type, severity, and location, the duration of posttraumatic apnea and the age and gender of outbred rats, there was great subject-to-subject variability in frequency, duration, and rate of progression of seizures, indicating that other factors, likely the subjects' genetic background and physiological states, have critical roles in determining the characteristics of PTE.


Subject(s)
Craniocerebral Trauma/pathology , Epilepsy, Post-Traumatic/pathology , Neocortex/pathology , Severity of Illness Index , Animals , Craniocerebral Trauma/complications , Craniocerebral Trauma/physiopathology , Electroencephalography/methods , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/physiopathology , Male , Neocortex/physiopathology , Rats , Rats, Sprague-Dawley
18.
J Pharmacol Exp Ther ; 336(3): 779-90, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21123672

ABSTRACT

Carisbamate (CRS) exhibits broad acute anticonvulsant activity in conventional anticonvulsant screens, genetic models of absence epilepsy and audiogenic seizures, and chronic spontaneous motor seizures arising after chemoconvulsant-induced status epilepticus. In add-on phase III trials with pharmacoresistant patients CRS induced < 30% average decreases in partial-onset seizure frequency. We assessed the antiepileptogenic and antiepileptic performance of subchronic CRS administration on posttraumatic epilepsy (PTE) induced by rostral parasaggital fluid percussion injury (rpFPI), which closely replicates human contusive closed head injury. Studies were blind and randomized, and treatment effects were assessed on the basis of sensitive electrocorticography (ECoG) recordings. Antiepileptogenic effects were assessed in independent groups of control and CRS-treated rats, at 1 and 3 months postinjury, after completion of a 2-week prophylactic treatment initiated 15 min after injury. The antiepileptic effects of 1-week CRS treatments were assessed in repeated measures experiments at 1 and 4 months postinjury. The studies were powered to detect ~50 and ~40% decreases in epilepsy incidence and frequency of seizures, respectively. Drug/vehicle treatment, ECoG analysis, and [CRS](plasma) determination all were performed blind. We detected no antiepileptogenic and an equivocal transient antiepileptic effects of CRS despite [CRS](plasma) comparable with or higher than levels attained in previous preclinical and clinical studies. These findings contrast with previous preclinical data demonstrating large efficacy of CRS, but agree with the average effect of CRS seen in clinical trials. The data support the use of rpFPI-induced PTE in the adolescent rat as a model of pharmacoresistant epilepsy for preclinical development.


Subject(s)
Anticonvulsants/therapeutic use , Carbamates/therapeutic use , Craniocerebral Trauma/drug therapy , Epilepsy, Post-Traumatic/drug therapy , Animals , Craniocerebral Trauma/complications , Craniocerebral Trauma/physiopathology , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/physiopathology , Male , Pilot Projects , Random Allocation , Rats , Rats, Sprague-Dawley , Single-Blind Method
19.
Eur J Pharmacol ; 643(1): 13-20, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20561518

ABSTRACT

Carbamazepine (5H-dibenz[b,f]azepine-5-carboxamide) and oxcarbazepine (10,11-dihydro-10-oxo-5H-dibenz[b,f]azepine-5-carboxamide) are widely used for the treatment of partial epilepsy. Recent work indicates that these drugs, in addition to targeting voltage-gated Na(+) channels, can modulate ligand-gated channels. These compounds appear to be particularly effective for treatment of nocturnal frontal lobe epilepsy, which can be caused by mutant neuronal nicotinic receptors. We compared the effects of carbamazepine and oxcarbazepine on heteromeric nicotinic receptors to better understand the underlying mechanism of the effect of these drugs in epileptic patients. Receptors were expressed in cell lines and studied by patch-clamp methods at -60 mV. For alpha2beta4 receptors activated with 100 microM nicotine, IC(50) for carbamazepine was 49 microM. Receptors in which alpha2 was substituted with alpha2-I279 N, linked to autosomal dominant nocturnal frontal lobe epilepsy, had an IC(50) of 21 microM. For oxcarbazepine, the IC(50) was larger than 500 microM for wild-type receptors and approximately 100 microM for mutant receptors. A similar inhibition was observed in the presence of 10 microM nicotine, indicating a non-competitive mechanism. The monohydroxy derivative (MHD) of oxcarbazepine, clinically the most relevant compound, was tested on both alpha2beta4 and alpha4beta2 receptors, to obtain a broader view of its possible physiological effects. At the typical concentration present in blood (100 microM), MHD produced an approximate 40% channel block on alpha4beta2, but no significant effect on alpha2beta4 receptors. Oxcarbazepine and MHD retarded the channel deactivation, suggesting that these compounds produce open channel block. These results may explain the particular efficacy of these drugs in nocturnal frontal lobe epilepsy.


Subject(s)
Anticonvulsants/pharmacokinetics , Carbamazepine/analogs & derivatives , Epilepsy, Frontal Lobe/metabolism , Mutation , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Action Potentials/drug effects , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Carbamazepine/chemistry , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Cell Line , Epilepsy, Frontal Lobe/drug therapy , Epilepsy, Frontal Lobe/genetics , Humans , Molecular Structure , Nicotine/pharmacology , Patch-Clamp Techniques , Protein Binding , Protein Subunits , Transfection
20.
Lancet Neurol ; 9(4): 413-24, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20298965

ABSTRACT

Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also be efficacious in the treatment of other nervous system disorders, such as migraine, multiple sclerosis, neurodegenerative diseases, and neuropathic pain. In this Review, we summarise the structure and function of VGSCs and their involvement in the pathophysiology of several neurological disorders. We also describe the biophysical and molecular bases for the mechanisms of action of antiepileptic VGSC blockers and discuss the efficacy of these drugs in the treatment of epileptic and non-epileptic disorders. Overall, clinical and experimental data indicate that these drugs are efficacious for a range of diseases, and that the development of drugs with enhanced selectivity for specific VGSC isoforms might be an effective and novel approach for the treatment of several neurological diseases.


Subject(s)
Epilepsy/drug therapy , Epilepsy/metabolism , Sodium Channel Blockers/therapeutic use , Sodium Channels/metabolism , Animals , Humans , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...