Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Plant Biol ; 5: e2, 2024.
Article in English | MEDLINE | ID: mdl-38572078

ABSTRACT

Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.

2.
Methods Mol Biol ; 2776: 305-320, 2024.
Article in English | MEDLINE | ID: mdl-38502513

ABSTRACT

ChloroKB ( http://chlorokb.fr ) is a knowledge base providing synoptic representations of the metabolism of the model plant Arabidopsis thaliana and its regulation. Initially focused on plastid metabolism, ChloroKB now accounts for the metabolism throughout the cell. ChloroKB is based on the CellDesigner formalism. CellDesigner supports graphical notation and listing of the corresponding symbols based on the Systems Biology Graphical Notation. Thus, this formalism allows biologists to represent detailed biochemical processes in a way that can be easily understood and shared, facilitating communication between researchers. In this chapter, we will focus on a specificity of ChloroKB, the representation of multilayered regulation of protein activity. Information on regulation of protein activity is indeed central to understanding the plant response to fluctuating environmental conditions. However, the intrinsic diversity of the regulatory modes and the abundance of detail may hamper comprehension of the regulatory processes described in ChloroKB. With this chapter, ChloroKB users will be guided through the representation of these sophisticated biological processes of prime importance to understanding metabolism or for applied purposes. The descriptions provided, which summarize years of work and a broad bibliography in a few pages, can help speed up the integration of regulatory processes in kinetic models of plant metabolism.


Subject(s)
Arabidopsis , Software , Systems Biology , Metabolic Networks and Pathways , Arabidopsis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL