Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Struct Funct ; 223(1): 211-220, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28756486

ABSTRACT

This study investigates the relationship between variability in cortical surface area and thickness of the pars opercularis of the inferior frontal gyrus and motor-inhibitory performance on a stop-signal task in a longitudinal, typically developing cohort of children and adolescents. Linear mixed-effects models were used to investigate the hypotheses that (1) cortical thinning and (2) a relatively larger cortical surface area of the bilateral pars opercularis of the inferior frontal gyrus would predict better performance on the stop-signal task in a cohort of 110 children and adolescents 4-13 years of age, with one to four observations (totaling 232 observations). Cortical thickness of the bilateral opercular region was not related to inhibitory performance. However, independent of age, gender, and total cortical surface area, relatively larger cortical surface area of the bilateral opercular region of the inferior frontal gyrus was associated with better motor-inhibitory performance. Follow-up analyses showed a significant effect of surface area of the right pars opercularis, but no evidence for an effect of area of left pars opercularis, on motor-inhibitory performance. These findings are consistent with the previous work in adults showing that cortical morphology of the pars opercularis is related to inhibitory functioning. It also expands upon this literature by showing that, in contrast to earlier work highlighting the importance of cortical thickness of this region in adults, relative cortical surface area of the pars opercularis may be related to developing motor-inhibitory functions during childhood and adolescence. Relationships between cortical phenotypes and individual differences in behavioral measures may vary across the lifespan.


Subject(s)
Brain Mapping , Broca Area/physiology , Functional Laterality/physiology , Inhibition, Psychological , Motor Activity/physiology , Signal Detection, Psychological/physiology , Adolescent , Broca Area/diagnostic imaging , Child , Cohort Studies , Female , Humans , Image Processing, Computer-Assisted , Male , Neuroimaging , Reaction Time/physiology
2.
Vision Res ; 141: 145-156, 2017 12.
Article in English | MEDLINE | ID: mdl-27793590

ABSTRACT

Reduced global motion sensitivity, relative to global static form sensitivity, has been found in children with many neurodevelopmental disorders, leading to the "dorsal stream vulnerability" hypothesis (Braddick et al., 2003). Individual differences in typically developing children's global motion thresholds have been shown to be associated with variations in specific parietal cortical areas (Braddick et al., 2016). Here, in 125 children aged 5-12years, we relate individual differences in global motion and form coherence thresholds to fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF), a major fibre tract communicating between parietal lobe and anterior cortical areas. We find a positive correlation between FA of the right SLF and individual children's sensitivity to global motion coherence, while FA of the left SLF shows a negative correlation. Further analysis of parietal cortical area data shows that this is also asymmetrical, showing a stronger association with global motion sensitivity in the left hemisphere. None of these associations hold for an analogous measure of global form sensitivity. We conclude that a complex pattern of structural asymmetry, including the parietal lobe and the superior longitudinal fasciculus, is specifically linked to the development of sensitivity to global visual motion. This pattern suggests that individual differences in motion sensitivity are primarily linked to parietal brain areas interacting with frontal systems in making decisions on integrated motion signals, rather than in the extra-striate visual areas that perform the initial integration. The basis of motion processing deficits in neurodevelopmental disorders may depend on these same structures.


Subject(s)
Individuality , Motion Perception/physiology , Nerve Net/anatomy & histology , White Matter/anatomy & histology , Child , Child, Preschool , Female , Humans , Male , Regression Analysis , Sensory Thresholds/physiology
3.
Front Hum Neurosci ; 8: 982, 2014.
Article in English | MEDLINE | ID: mdl-25538604

ABSTRACT

Language comprehension requires rapid and flexible access to information stored in long-term memory, likely influenced by activation of rich world knowledge and by brain systems that support the processing of sensorimotor content. We hypothesized that while literal language about biological motion might rely on neurocognitive representations of biological motion specific to the details of the actions described, metaphors rely on more generic representations of motion. In a priming and self-paced reading paradigm, participants saw video clips or images of (a) an intact point-light walker or (b) a scrambled control and read sentences containing literal or metaphoric uses of biological motion verbs either closely or distantly related to the depicted action (walking). We predicted that reading times for literal and metaphorical sentences would show differential sensitivity to the match between the verb and the visual prime. In Experiment 1, we observed interactions between the prime type (walker or scrambled video) and the verb type (close or distant match) for both literal and metaphorical sentences, but with strikingly different patterns. We found no difference in the verb region of literal sentences for Close-Match verbs after walker or scrambled motion primes, but Distant-Match verbs were read more quickly following walker primes. For metaphorical sentences, the results were roughly reversed, with Distant-Match verbs being read more slowly following a walker compared to scrambled motion. In Experiment 2, we observed a similar pattern following still image primes, though critical interactions emerged later in the sentence. We interpret these findings as evidence for shared recruitment of cognitive and neural mechanisms for processing visual and verbal biological motion information. Metaphoric language using biological motion verbs may recruit neurocognitive mechanisms similar to those used in processing literal language but be represented in a less-specific way.

4.
Development ; 138(20): 4423-32, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21880782

ABSTRACT

The cellular mechanisms that drive growth and remodeling of the early intestinal epithelium are poorly understood. Current dogma suggests that the murine fetal intestinal epithelium is stratified, that villi are formed by an epithelial remodeling process involving the de novo formation of apical surface at secondary lumina, and that radial intercalation of the stratified cells constitutes a major intestinal lengthening mechanism. Here, we investigate cell polarity, cell cycle dynamics and cell shape in the fetal murine intestine between E12.5 and E14.5. We show that, contrary to previous assumptions, this epithelium is pseudostratified. Furthermore, epithelial nuclei exhibit interkinetic nuclear migration, a process wherein nuclei move in concert with the cell cycle, from the basal side (where DNA is synthesized) to the apical surface (where mitosis takes place); such nuclear movements were previously misinterpreted as the radial intercalation of cells. We further demonstrate that growth of epithelial girth between E12.5 and E14.5 is driven by microtubule- and actinomyosin-dependent apicobasal elongation, rather than by progressive epithelial stratification as was previously thought. Finally, we show that the actin-binding protein Shroom3 is crucial for the maintenance of the single-layered pseudostratified epithelium. In mice lacking Shroom3, the epithelium is disorganized and temporarily stratified during villus emergence. These results favor an alternative model of intestinal morphogenesis in which the epithelium remains single layered and apicobasally polarized throughout early intestinal development.


Subject(s)
Intestinal Mucosa/embryology , Animals , Cell Cycle , Cell Polarity , Cell Shape , Female , Gene Expression Regulation, Developmental , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Morphogenesis , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL