Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(49): 20736-20749, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38011905

ABSTRACT

Despite their ban and restriction under the 2001 Stockholm Convention, persistent organic pollutants (POPs) are still widespread and pervasive in the environment. Releases of these toxic and bioaccumulative chemicals are ongoing, and their contribution to population declines of marine mammals is of global concern. To safeguard their survival, it is of paramount importance to understand the effectiveness of mitigation measures. Using one of the world's largest marine mammals strandings data sets, we combine published and unpublished data to examine pollutant concentrations in 11 species that stranded along the coast of Great Britain to quantify spatiotemporal trends over three decades and identify species and regions where pollutants pose the greatest threat. We find that although levels of pollutants have decreased overall, there is significant spatial and taxonomic heterogeneity such that pollutants remain a threat to biodiversity in several species and regions. Of individuals sampled within the most recent five years (2014-2018), 48% of individuals exhibited a concentration known to exceed toxic thresholds. Notably, pollutant concentrations are highest in long-lived, apex odontocetes (e.g., killer whales (Orcinus orca), bottlenose dolphins (Tursiops truncatus), and white-beaked dolphins (Lagenorhynchus albirostris)) and were significantly higher in animals that stranded on more industrialized coastlines. At the present concentrations, POPs are likely to be significantly impacting marine mammal health. We conclude that more effective international elimination and mitigation strategies are urgently needed to address this critical issue for the global ocean health.


Subject(s)
Bottle-Nosed Dolphin , Caniformia , Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Whale, Killer , Animals , Water Pollutants, Chemical/toxicity , Environmental Monitoring
2.
Biol Lett ; 19(11): 20230331, 2023 11.
Article in English | MEDLINE | ID: mdl-37935371

ABSTRACT

The order Lamniformes contains charismatic species such as the white shark Carcharodon carcharias and extinct megatooth shark Otodus megalodon, and is of particular interest given their influence on marine ecosystems, and because some members exhibit regional endothermy. However, there remains significant debate surrounding the prevalence and evolutionary origin of regional endothermy in the order, and therefore the development of phenomena such as gigantism and filter-feeding in sharks generally. Here we show a basal lamniform shark, the smalltooth sand tiger shark Odontaspis ferox, has centralized skeletal red muscle and a thick compact-walled ventricle; anatomical features generally consistent with regionally endothermy. This result, together with the recent discovery of probable red muscle endothermy in filter feeding basking sharks Cetorhinus maximus, suggests that this thermophysiology is more prevalent in the Lamniformes than previously thought, which in turn has implications for understanding the evolution of regional endothermy, gigantism, and extinction risk of warm-bodied shark species both past and present.


Subject(s)
Gigantism , Sharks , Animals , Sharks/physiology , Ecosystem , Prevalence , Muscle, Skeletal
3.
J Fish Biol ; 103(6): 1549-1555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602958

ABSTRACT

Three Odontaspis ferox (confirmed by mtDNA barcoding) were found in the English Channel and Celtic Sea in 2023 at Lepe, UK (50.7846, -1.3508), Kilmore Quay, Ireland (52.1714, -6.5937), and Lyme Bay, UK (50.6448, -2.9302). These are the first records of O. ferox in either country, and extend the species' range by over three degrees of latitude, to >52° N. They were ~275 (female), 433 (female), and 293 cm (male) total length, respectively. These continue a series of new records, possibly indicative of a climate change-induced shift in the species' range.


Subject(s)
Sharks , Male , Female , Animals , Sharks/genetics , Ireland , DNA, Mitochondrial/genetics , United Kingdom , Climate Change
4.
Ecol Evol ; 11(6): 2717-2730, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767831

ABSTRACT

A wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations. This is particularly true when these technologies are deployed to monitor species in hard-to-access locations.Here, we develop a novel approach to analyzing acoustic telemetry data, using the timing and duration of gaps between animal detections to infer different behaviors. Using the durations between detections at the same and different receiver locations (i.e., detection gaps), we classify behaviors into "restricted" or potential wider "out-of-range" movements synonymous with longer distance dispersal. We apply this method to investigate spatial and temporal segregation of inferred movement patterns in two sympatric species of reef shark within a large, remote, marine protected area (MPA). Response variables were generated using network analysis, and drivers of these movements were identified using generalized linear mixed models and multimodel inference.Species, diel period, and season were significant predictors of "out-of-range" movements. Silvertip sharks were overall more likely to undertake "out-of-range" movements, compared with gray reef sharks, indicating spatial segregation, and corroborating previous stable isotope work between these two species. High individual variability in "out-of-range" movements in both species was also identified.We present a novel gap analysis of telemetry data to help infer differential movement and space use patterns where acoustic coverage is imperfect and other tracking methods are impractical at scale. In remote locations, inference may be the best available tool and this approach shows that acoustic telemetry gap analysis can be used for comparative studies in fish ecology, or combined with other research techniques to better understand functional mechanisms driving behavior.

5.
Environ Int ; 150: 106303, 2021 05.
Article in English | MEDLINE | ID: mdl-33454091

ABSTRACT

Polychlorinated biphenyls (PCBs) are highly toxic and persistent aquatic pollutants that are known to bioaccumulate in a variety of marine mammals. They have been associated with reduced recruitment rates and population declines in multiple species. Evidence to date documents effects of PCB exposures on female reproduction, but few studies have investigated whether PCB exposure impacts male fertility. Using blubber tissue samples of 99 adult and 168 juvenile UK-stranded harbour porpoises (Phocoena phocoena) collected between 1991 and 2017, here we show that PCBs exposures are associated with reduced testes weights in adults with good body condition. In animals with poor body condition, however, the impact of PCBs on testes weights was reduced, conceivably due to testes weights being limited by nutritional stress. This is the first study to investigate the relationship between PCB contaminant burden and testes weights in cetaceans and represents a substantial advance in our understanding of the relationship between PCB exposures and male reproductive biology in cetaceans. As testes weight is a strong indicator of male fertility in seasonally breeding mammals, we suggest the inclusion of such effects in population level impact assessments involving PCB exposures. Given the re-emergent PCB threat our findings are globally significant, with potentially serious implications for long-lived mammals. We show that more effective PCB controls could have a substantial impact on the reproductive health of coastal cetacean species and that management actions may need to be escalated to ensure adequate protection of the most vulnerable cetacean populations.


Subject(s)
Phocoena , Polychlorinated Biphenyls , Porpoises , Testis/drug effects , Water Pollutants, Chemical , Animals , Male , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Conserv Biol ; 35(4): 1222-1232, 2021 08.
Article in English | MEDLINE | ID: mdl-33314325

ABSTRACT

Mapping and predicting the potential risk of fishing activities to large marine protected areas (MPAs), where management capacity is low but fish biomass may be globally important, is vital to prioritizing enforcement and maximizing conservation benefits. Drifting fish aggregating devices (dFADs) are a highly effective fishing method employed in purse seine fisheries that attract and accumulate biomass fish, making fish easier to catch. However, dFADs are associated with several negative impacts, including high bycatch rates and lost or abandoned dFADs becoming beached on sensitive coastal areas (e.g., coral reefs). Using Lagrangian particle modeling, we determined the potential transit of dFADs in a large MPA around the Chagos Archipelago in the central Indian Ocean. We then quantified the risk of dFADs beaching on the archipelago's reefs and atolls and determined the potential for dFADs to pass through the MPA, accumulate biomass while within, and export it into areas where it can be legally fished (i.e., transit). Over one-third (37.51%) of dFADs posed a risk of either beaching or transiting the MPA for >14 days, 17.70% posed a risk of beaching or transiting the MPA for >30 days, and 13.11% posed a risk of beaching or transiting the MPA for >40 days. Modeled dFADs deployed on the east and west of the perimeter were more likely to beach and have long transiting times (i.e., posed the highest risk). The Great Chagos Bank, the largest atoll in the archipelago, was the most likely site to be affected by dFADs beaching. Overall, understanding the interactions between static MPAs and drifting fishing gears is vital to developing suitable management plans to support enforcement of MPA boundaries and the functioning and sustainability of their associated biomass.


Riesgos para las Grandes Áreas Marinas Protegidas Ocasionados por los Dispositivos Agregadores de Peces a la Deriva Resumen El mapeo y la predicción del riesgo potencial que las actividades de pesca representan para las grandes áreas marinas (AMP), en donde la capacidad de manejo es baja pero la biomasa de peces puede ser de importancia global, son vitales para priorizar la aplicación y maximizar los beneficios de conservación. Los dispositivos agregadores de peces a la deriva (DAPds) son un método de pesca altamente efectivo y empleado en las pesquerías de redes de cerco. Estos dispositivos atraen y acumulan biomasa de peces, facilitando así la captura de peces. Sin embargo, los DAPd están asociados con varios impactos negativos, incluyendo tasas altas de captura accesoria y DAPd perdidos o abandonados que terminan varados en áreas costeras sensibles (p. ej.: arrecifes de coral). Mediante el modelado de partículas langrangianas, determinamos el tránsito potencial de los DAPd en una AMP grande alrededor del Archipiélago Chagos en el centro del Océano Índico. Después cuantificamos el riesgo de varamiento de los DAPd en los arrecifes y atolones del arrecife y determinamos el potencial que tienen los DAPd de pasar por la AMP, acumular biomasa durante el trayecto y exportarla a áreas en las que es legal su pesca (es decir, transitar). Más de un tercio (37.51%) de los DAPd representaron un riesgo de varamiento o tránsito a través de la AMP durante >14 días y el 17.70% representó un riesgo de varamiento o tránsito a través de la AMP durante >40 días. Los DAPd modelados desplegados en el este y en el oeste del perímetro tuvieron mayor probabilidad de varamiento o de tener tiempos de tránsito largos (es decir, representaron el riesgo más alto). El Gran Banco de Chagos, el atolón más grande en el archipiélago, fue el sitio con mayor probabilidad de ser afectado por el varamiento de los DAPd. En general, el entendimiento de las interacciones entre las AMP estáticas y el equipo de pesca a la deriva es vital para el desarrollo de planes de manejo adecuados para respaldar el cumplimiento de los límites de las AMP y el funcionamiento y sostenibilidad de la biomasa asociada a ellas.


Subject(s)
Conservation of Natural Resources , Fisheries , Animals , Biomass , Coral Reefs , Fishes , Indian Ocean
7.
Environ Sci Technol ; 54(4): 2277-2286, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32009388

ABSTRACT

Polychlorinated biphenyls (PCBs) are toxic, persistent, and lipophilic chemical compounds that accumulate to high levels in harbor porpoises (Phocoena phocoena) and other cetaceans. It is important to monitor PCBs in wildlife, particularly in highly exposed populations to understand if concentrations are declining and how levels relate to toxicological thresholds and indices of health like infectious disease mortality. Here we show, using generalized additive models and tissue samples of 814 U.K.-stranded harbor porpoises collected between 1990 and 2017, that mean blubber PCB concentrations have fallen below the proposed thresholds for toxic effects. However, we found they are still associated with increased rates of infectious disease mortality such that an increase in PCB blubber concentrations of 1 mg kg-1 lipid corresponds with a 5% increase in risk of infectious disease mortality. Moreover, rates of decline and levels varied geographically, and the overall rate of decline is slow in comparison to other pollutants. We believe this is evidence of long-term preservation in the population and continued environmental contamination from diffuse sources. Our findings have serious implications for the management of PCB contamination in the U.K. and reinforce the need to prevent PCBs entering the marine environment to ensure that levels continue to decline.


Subject(s)
Phocoena , Polychlorinated Biphenyls , Porpoises , Water Pollutants, Chemical , Adipose Tissue , Animals , Animals, Wild
8.
Sci Total Environ ; 708: 134835, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31806345

ABSTRACT

Polychlorinated biphenyls (PCBs) are a group of 209 persistent and bio-accumulative toxic pollutants present as complex mixtures in human and animal tissues. Harbor porpoises accumulate some of the highest levels of PCBs because they are long-lived mammals that feed at a high trophic level. Studies typically use the sum of a suite of individual chlorobiphenyl congeners (CBs) to investigate PCBs in wildlife. However, toxic effects and thresholds of CB congeners differ, therefore population health risks of exposure may be under or over-estimated dependent on the congener profiles present. In this study, we found congener profiles varied with age, sex and location, particularly between adult females and juveniles. We found that adult females had the highest proportions of octa-chlorinated congeners whilst juveniles had the highest proportions of tri- and tetra-chlorinated congeners. This is likely to be a consequence of pollutant offloading between mothers and calves during lactation. Analysis of the individual congener toxicities found that juveniles were exposed to a more neurotoxic CB mixture at a time when they were most vulnerable to its effects. These findings are an important contribution towards our understanding of variation in congener profiles and the potential effects and threats of PCB exposure in cetaceans.


Subject(s)
Phocoena , Animals , Animals, Wild , Environmental Pollutants , Female , Polychlorinated Biphenyls , United Kingdom
9.
J Fish Biol ; 94(4): 680-685, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784087

ABSTRACT

Stable-isotope analyses (δ13 C, δ15 N and δ34 S) of multiple tissues (fin, muscle, red blood cells and plasma), revealed ontogenetic shifts in resource use by grey reef sharks Carcharhinus amblyrhynchos and resource partitioning with silvertip sharks Carcharhinus albimarginatus within the British Indian Ocean Territory marine protected area (MPA). Resource partitioning varied temporally, with C. albimarginatus feeding on more pelagic prey during October to January, potentially attributable to an influx of pelagic prey from outside the MPA at that time. Reef sharks may therefore be affected by processes outside an MPA, even if the sharks do not leave the MPA.


Subject(s)
Behavior, Animal , Sharks/physiology , Africa, Eastern , Animals , Indian Ocean , Isotopes/analysis , Isotopes/metabolism , Likelihood Functions , Seasons , Sharks/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...