Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Article in English | MEDLINE | ID: mdl-38747199

ABSTRACT

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Subject(s)
Cyclonic Storms , Forests , Trees , Tropical Climate , Wind , Trees/growth & development , Bayes Theorem
2.
New Phytol ; 240(1): 105-113, 2023 10.
Article in English | MEDLINE | ID: mdl-36960541

ABSTRACT

Plant flammability is an important driver of wildfires, and flammability itself is determined by several plant functional traits. While many plant traits are influenced by climatic conditions, the interaction between climatic conditions and plant flammability has rarely been investigated. Here, we explored the relationships among climatic conditions, shoot-level flammability components, and flammability-related functional traits for 186 plant species from fire-prone and nonfire-prone habitats. For species originating from nonfire-prone habitats, those from warmer areas tended to have lower shoot moisture content and larger leaves, and had higher shoot flammability with higher ignitibility, combustibility, and sustainability. Plants in wetter areas tended to have lower shoot flammability with lower combustibility and sustainability due to higher shoot moisture contents. In fire-prone habitats, shoot flammability was not significantly related to any climatic factor. Our study suggests that for species originating in nonfire-prone habitats, climatic conditions have influenced plant flammability by shifting flammability-related functional traits, including leaf size and shoot moisture content. Climate does not predict shoot flammability in species from fire-prone habitats; here, fire regimes may have an important role in shaping plant flammability. Understanding these nuances in the determinants of plant flammability is important in an increasingly fire-prone world.


Subject(s)
Fires , Wildfires , Ecosystem , Plants , Plant Leaves
3.
Science ; 377(6613): 1440-1444, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137034

ABSTRACT

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Subject(s)
Forests , Global Warming , Isoptera , Wood , Animals , Carbon Cycle , Temperature , Tropical Climate , Wood/microbiology
4.
Plant Cell Environ ; 44(11): 3471-3489, 2021 11.
Article in English | MEDLINE | ID: mdl-34453442

ABSTRACT

Record-breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality). Here, we examine the impacts of climate-driven shifts in fire regimes on vegetation communities, and likely responses to fire coinciding with severe drought, heatwaves and/or insect outbreaks. We present scenario-based conceptual models on how overlapping disturbance events and shifting fire regimes interact differently to limit post-fire resprouting and recruitment capacity. We demonstrate that, although many communities will remain resilient to changing fire regimes in the short-term, longer-term changes to vegetation structure, demography and species composition are likely, with a range of subsequent effects on ecosystem function. Resprouting species are likely to be most resilient to changing fire regimes. However, even these species are susceptible if exposed to repeated short-interval fire in combination with other stressors. Post-fire recruitment is highly vulnerable to increased fire frequency, particularly as climatic limitations on propagule availability intensify. Prediction of community responses to fire under climate change will be greatly improved by addressing knowledge gaps on how overlapping disturbances and climate change-induced shifts in fire regime affect post-fire resprouting, recruitment, growth rates, and species-level adaptation capacity.


Subject(s)
Climate Change , Ecosystem , Fires , Plant Physiological Phenomena
5.
New Phytol ; 228(1): 95-105, 2020 10.
Article in English | MEDLINE | ID: mdl-32395835

ABSTRACT

Plant flammability varies across species, but the evolutionary basis for this variation is not well understood. Phylogenetic analysis of interspecific variation in flammability can provide insights into the evolution of plant flammability. We measured four components of flammability (ignitability, sustainability, combustibility and consumability) to assess the shoot-level flammability of 21 species of Dracophyllum (Ericaceae). Using a macroevolutionary approach, we explored phylogenetic patterns of variation in shoot-level flammability. Shoot-level flammability varied widely in Dracophyllum. Species in the subgenus Oreothamnus had higher flammability and smaller leaves than those in the subgenus Dracophyllum. Shoot flammability (ignitability, combustibility and consumability) and leaf length showed phylogenetic conservatism across genus Dracophyllum, but exhibited lability among some closely related species, such as D. menziesii and D. fiordense. Shoot flammability of Dracophyllum species was negatively correlated with leaf length and shoot moisture content, but had no relationship with the geographic distribution of Dracophyllum species. Shoot-level flammability varied widely in the genus Dracophyllum, but showed phylogenetic conservatism. The higher flammability of the subgenus Oreothamnus may be an incidental or emergent property as a result of the evolution of flammability-related traits, such as smaller leaves, which were selected for other functions and incidentally changed flammability.


Subject(s)
Ericaceae , Fires , Phylogeny , Plant Leaves , Plants
6.
Nat Plants ; 6(4): 355-359, 2020 04.
Article in English | MEDLINE | ID: mdl-32284547

ABSTRACT

Terrestrial plants and fire have interacted for at least 420 million years1. Whether recurrent fire drives plants to evolve higher flammability and what the evolutionary pattern of plant flammability is remain unclear2-7. Here, we show that phylogeny, the susceptibility of a habitat to have recurrent fires (that is, fire-proneness) and growth form are important predictors of the shoot flammability of 194 indigenous and introduced vascular plant species (Tracheophyta) from New Zealand. The phylogenetic signal of the flammability components and the variation in flammability among phylogenetic groups (families and higher taxonomic level clades) demonstrate that shoot flammability is phylogenetically conserved. Some closely related species, such as in Dracophyllum (Ericaceae), vary in flammability, indicating that flammability exhibits evolutionary flexibility. Species in fire-prone ecosystems tend to be more flammable than species from non-fire-prone ecosystems, suggesting that fire may have an important role in the evolution of plant flammability. Growth form also influenced flammability-forbs were less flammable than grasses, trees and shrubs; by contrast, grasses had higher biomass consumption by fire than other groups. The results show that shoot flammability of plants is largely correlated with phylogenetic relatedness, and high flammability may result in parallel evolution driven by environmental factors, such as fire regime.


Subject(s)
Ecosystem , Fires , Plant Shoots/physiology , Plants , Biological Evolution , Phylogeny , Plants/anatomy & histology , Plants/classification , Plants/genetics , Species Specificity , Wildfires
7.
J Environ Manage ; 233: 329-336, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30584964

ABSTRACT

Wildfire is a widespread natural hazard that is expected to increase in areal extent, severity and frequency with ongoing changes in climate and land-use. One tool that has been used in an effort to reduce the damage caused by wildfires is green firebreaks: strips of low-flammability vegetation grown at strategic locations in the landscape. Green firebreaks are increasingly being recommended for wildfire management and have been implemented in many countries. The approach is particularly widely used in China, where more than 364,000 km of green firebreaks have been planted and a further 167,000 km are planned for construction before 2025. China is not only a world leader in the implementation of green firebreaks but has also led the way in testing the effectiveness of green firebreaks and in providing guidelines for green firebreak construction. However, most of this research has been reported in the non-English literature, and so is inaccessible to many readers. Here we review the extensive research on the construction and effectiveness of green firebreaks in China and examine how the lessons learned from this research could contribute to the effective implementation of green firebreaks globally. Chinese studies suggest that the ideal species for green firebreaks should meet trait requirements from three perspectives: ecological, silvicultural and economic. Green firebreaks with a multi-layered structure and a closed canopy have the potential to be an effective, long-term, biodiversity-friendly and low-cost tool for fire suppression, although they complement rather than replace other more traditional fire suppression approaches.


Subject(s)
Fires , Wildfires , China , Climate , Plants
8.
Am J Bot ; 102(10): 1590-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26437886

ABSTRACT

PREMISE OF THE STUDY: In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. METHODS: We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. KEY RESULTS: Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. CONCLUSIONS: In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing.


Subject(s)
Fires , Magnoliopsida/anatomy & histology , Plant Bark/anatomy & histology , Tracheophyta/anatomy & histology , New Zealand , Rainforest , Trees/anatomy & histology
9.
PeerJ ; 2: e285, 2014.
Article in English | MEDLINE | ID: mdl-24688862

ABSTRACT

Proficiency in mathematics and statistics is essential to modern ecological science, yet few studies have assessed the level of quantitative training received by ecologists. To do so, we conducted an online survey. The 937 respondents were mostly early-career scientists who studied biology as undergraduates. We found a clear self-perceived lack of quantitative training: 75% were not satisfied with their understanding of mathematical models; 75% felt that the level of mathematics was "too low" in their ecology classes; 90% wanted more mathematics classes for ecologists; and 95% more statistics classes. Respondents thought that 30% of classes in ecology-related degrees should be focused on quantitative disciplines, which is likely higher than for most existing programs. The main suggestion to improve quantitative training was to relate theoretical and statistical modeling to applied ecological problems. Improving quantitative training will require dedicated, quantitative classes for ecology-related degrees that contain good mathematical and statistical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...