Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
mBio ; 14(5): e0021923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37606367

ABSTRACT

IMPORTANCE: A major focus of host-microbe research is to understand how genetic differences, of various magnitudes, among hosts translate to differences in their microbiomes. This has been challenging for animal hosts, including humans, because it is difficult to control environmental variables tightly enough to isolate direct genetic effects on the microbiome. Our work in stickleback fish is a significant contribution because our experimental approach allowed strict control over environmental factors, including standardization of the microbiome from the earliest stage of development and unrestricted co-housing of fish in a truly common environment. Furthermore, we measured host genetic variation over 2,000 regions of the stickleback genome, comparing this information and microbiome composition data among fish from very similar and very different genetic backgrounds. Our findings highlight how differences in the host genome influence microbiome diversity and make a case for future manipulative microbiome experiments that use host systems with naturally occurring genetic variation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Smegmamorpha , Animals , Humans , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Smegmamorpha/genetics , Genome , Genomics
2.
GigaByte ; 2023: gigabyte76, 2023.
Article in English | MEDLINE | ID: mdl-36969711

ABSTRACT

The Gulf pipefish Syngnathus scovelli has emerged as an important species for studying sexual selection, development, and physiology. Comparative evolutionary genomics research involving fishes from Syngnathidae depends on having a high-quality genome assembly and annotation. However, the first S. scovelli genome assembled using short-read sequences and a smaller RNA-sequence dataset has limited contiguity and a relatively poor annotation. Here, using PacBio long-read high-fidelity sequences and a proximity ligation library, we generate an improved assembly to obtain 22 chromosome-level scaffolds. Compared to the first assembly, the gaps in the improved assembly are smaller, the N75 is larger, and our genome is ~95% BUSCO complete. Using a large body of RNA-Seq reads from different tissue types and NCBI's Eukaryotic Annotation Pipeline, we discovered 28,162 genes, of which 8,061 are non-coding genes. Our new genome assembly and annotation are tagged as a RefSeq genome by NCBI and provide enhanced resources for research work involving S. scovelli..

3.
J Fish Biol ; 102(4): 844-855, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36647901

ABSTRACT

Gynogenetic embryos - those inheriting only maternal DNA - can be experimentally created by fertilizing eggs with radiation-treated sperm containing inactivated paternal chromosomes. Diploidy in the zygotes can be maintained through prevention of the second meiosis or restored by preventing the first mitosis after the maternal chromosome complement has been replicated. These gynogenetic organisms are useful in many fields including aquaculture, evolutionary biology and genomics. Although gynogenetic organisms have been created in numerous species, the completeness of uni-parental inheritance has often been assumed rather than thoroughly quantified across the genome. Instead, when tests of uni-parental inheritance occur, they typically rely on well-studied genetically determined phenotypes that represent a very small sub-set of the genome. Only assessing small genomic regions for paternal inheritance leaves the question of whether some paternal contributions to offspring might still have occurred. In this study, the authors quantify the efficacy of creating gynogenetic diploid three-spined stickleback fish (Gasterosteus aculeatus). To this end, the authors mirrored previous assessments of paternal contribution using well-studied genetically determined phenotypes including sex and genetically dominant morphological traits but expanded on previous studies using dense restriction site-associated DNA sequencing (RAD-seq) markers in parents and offspring to assess paternal inheritance genome-wide. In the gynogenetic diploids, the authors found no male genotypes underlying their phenotypes of interest - sex and dominant phenotypic traits. Using genome-wide assessments of paternal contribution, nevertheless, the authors found evidence of a small, yet potentially important, amount of paternally "leaked" genetic material. The application of this genome-wide approach identifies the need for more widespread assessment of paternal contributions to gynogenetic animals and promises benefits for many aspects of aquaculture, evolutionary biology and genomics.


Subject(s)
Semen , Smegmamorpha , Male , Animals , Genome , Ploidies , Chromosomes , Smegmamorpha/genetics , Genetic Markers
4.
JAMA Netw Open ; 5(6): e2216796, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35708690

ABSTRACT

Importance: Latinx individuals have been disproportionately affected during the COVID-19 pandemic caused by the spread of SARS-CoV-2. It is imperative to evaluate newly developed preventive interventions to assess their effect on COVID-19 health disparities. Objective: To examine the effectiveness of a culturally tailored outreach intervention designed to increase SARS-CoV-2 testing rates among Latinx populations. Design, Setting, and Participants: In this cluster randomized trial performed from February 1 to August 31, 2021, in community settings in 9 Oregon counties, 38 sites were randomized a priori (19 to the community health promoters intervention and 19 to outreach as usual wait-listed controls). Thirty-three sites were activated. A total of 394 SARS-CoV-2 testing events were held and 1851 diagnostic samples collected, of which 919 were from Latinx persons. Interventions: A culturally informed outreach program was developed that made use of promotores de salud (community health promoters) to increase Latinx SARS-CoV-2 testing. Strategies addressed barriers by disseminating information on testing events in English and Spanish, mitigating misinformation, and increasing trust. Main Outcomes and Measures: The primary outcomes were the count of sample tests from Latinx persons and the sampled proportion of the Latinx populace. Site-level covariates included census tract Latinx populace, nativity (number of US-born individuals per 100 population), median age, and income inequality. Time-varying covariates included number of new weekly SARS-CoV-2-positive cases and percentage of vaccine coverage at the county level. Results: A total of 15 clusters (sites) were randomized to the control group and 18 to the community health promoters group. A total of 1851 test samples were collected, of which 995 (53.8%) were from female participants and 919 (49.6%) were from Latinx individuals. The intervention tested 3.84 (95% CI, 2.47-5.97) times more Latinx individuals per event than controls (incident rate ratio, 0.79; 95% CI, 0.46-1.34; Cohen d = 0.74; P < .001). The intervention was associated with a 0.28 increase in the proportion of Latinx populace being tested compared with control sites for the dependent variable scaled as the proportion of the Latinx populace ×100, or a 0.003 proportion of the raw populace count. The use of a standardized scaling of the proportion of Latinx individuals showed that the relative percentage increase was 0.53 (95% CI, 0.21-0.86) in the intervention sites compared with controls, representing a medium effect size. Conclusions and Relevance: To our knowledge, this was the first randomized evaluation of an outreach intervention designed to increase SARS-CoV-2 testing among Latinx populations. Findings could be used to implement strategies to reduce other health disparities experienced by these groups. Trial Registration: ClinicalTrials.gov Identifier: NCT04793464.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Female , Humans , Pandemics/prevention & control , Public Health
5.
Proc Natl Acad Sci U S A ; 119(26): e2119602119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733255

ABSTRACT

Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.


Subject(s)
Genome , Repetitive Sequences, Nucleic Acid , Smegmamorpha , Animals , Fibroblast Growth Factors/genetics , Genomics , Male , Phylogeny , Smegmamorpha/anatomy & histology , Smegmamorpha/classification , Smegmamorpha/genetics
6.
Trends Genet ; 38(1): 22-44, 2022 01.
Article in English | MEDLINE | ID: mdl-34334238

ABSTRACT

Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic the spectrum of disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. EMMs complement traditional laboratory models by providing unique avenues to study gene-by-environment interactions, modular mutations in noncoding regions, and their evolved compensations. EMMs have improved our understanding of complex diseases, including cancer, diabetes, and aging, and illuminated mechanisms in many organs. Rapid advancements of sequencing and genome-editing technologies have catapulted the utility of EMMs, particularly in fish. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Importantly, evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease.


Subject(s)
Biological Evolution , Fishes , Animals , Fishes/genetics , Humans , Phenotype , Vertebrates
7.
G3 (Bethesda) ; 10(2): 613-622, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31843804

ABSTRACT

Selection, via host immunity, is often required to foster beneficial microbial symbionts and suppress deleterious pathogens. In animals, the host immune system is at the center of this relationship. Failed host immune system-microbial interactions can result in a persistent inflammatory response in which the immune system indiscriminately attacks resident microbes, and at times the host cells themselves, leading to diseases such as Ulcerative Colitis, Crohn's Disease, and Psoriasis. Host genetic variation has been linked to both microbiome diversity and to severity of such inflammatory disease states in humans. However, the microbiome and inflammatory states manifest as quantitative traits, which encompass many genes interacting with one another and the environment. The mechanistic relationships among all of these interacting components are still not clear. Developing natural genetic models of host-microbe interactions is therefore fundamental to understanding the complex genetics of these and other diseases. Threespine stickleback (Gasterosteus aculeatus) fish are a tractable model for attacking this problem because of abundant population-level genetic and phenotypic variation in the gut inflammatory response. Previous work in our laboratory identified genetically divergent stickleback populations exhibiting differences in intestinal neutrophil activity. We took advantage of this diversity to genetically map variation in an emblematic element of gut inflammation - intestinal neutrophil recruitment - using an F2-intercross mapping framework. We identified two regions of the genome associated with increased intestinal inflammation containing several promising candidate genes. Within these regions we found candidates in the Coagulation/Complement System, NFkB and MAPK pathways along with several genes associated with intestinal diseases and neurological diseases commonly accompanying intestinal inflammation as a secondary symptom. These findings highlight the utility of using naturally genetically diverse 'evolutionary mutant models' such as threespine stickleback to better understand interactions among host genetic diversity and microbiome variation in health and disease states.


Subject(s)
Chromosome Mapping , Enteritis/veterinary , Fish Diseases/genetics , Gene Targeting , Neutrophils/metabolism , Quantitative Trait Loci , Smegmamorpha/genetics , Animals , Disease Susceptibility/immunology , Fish Diseases/immunology , Genetic Predisposition to Disease , Humans , Leukocyte Count , Neutrophils/immunology
8.
mSystems ; 4(4)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409661

ABSTRACT

Multicellular organisms interact with resident microbes in important ways, and a better understanding of host-microbe interactions is aided by tools such as high-throughput 16S sequencing. However, rigorous evaluation of the veracity of these tools in a different context from which they were developed has often lagged behind. Our goal was to perform one such critical test by examining how variation in tissue preparation and DNA isolation could affect inferences about gut microbiome variation between two genetically divergent lines of threespine stickleback fish maintained in the same laboratory environment. Using careful experimental design and intensive sampling of individuals, we addressed technical and biological sources of variation in 16S-based estimates of microbial diversity. After employing a two-tiered bead beating approach that comprised tissue homogenization followed by microbial lysis in subsamples, we found an extremely minor effect of DNA isolation protocol relative to among-host microbial diversity differences. Abundance estimates for rare operational taxonomic units (OTUs), however, showed much lower reproducibility. Gut microbiome composition was highly variable across fish-even among cohoused siblings-relative to technical replicates, but a subtle effect of host genotype (stickleback line) was nevertheless detected for some microbial taxa.IMPORTANCE Our findings demonstrate the importance of appropriately quantifying biological and technical variance components when attempting to understand major influences on high-throughput microbiome data. Our focus was on understanding among-host (biological) variance in community metrics and its magnitude in relation to within-host (technical) variance, because meaningful comparisons among individuals are necessary in addressing major questions in host-microbe ecology and evolution, such as heritability of the microbiome. Our study design and insights should provide a useful example for others desiring to quantify microbiome variation at biological levels in the face of various technical factors in a variety of systems.

9.
Genes (Basel) ; 10(7)2019 06 26.
Article in English | MEDLINE | ID: mdl-31248008

ABSTRACT

Much of animal-associated microbiome research has been conducted in species for which little is known of their natural ecology and evolution. Microbiome studies that combine population genetic, environment, and geographic data for wild organisms can be very informative, especially in situations where host genetic variation and the environment both influence microbiome variation. The few studies that have related population genetic and microbiome variation in wild populations have been constrained by observation-based kinship data or incomplete genomic information. Here we integrate population genomic and microbiome analyses in wild threespine stickleback fish distributed throughout western Oregon, USA. We found that gut microbiome diversity and composition partitioned more among than within wild host populations and was better explained by host population genetic divergence than by environment and geography. We also identified gut microbial taxa that were most differentially abundant across environments and across genetically divergent populations. Our findings highlight the benefits of studies that investigate host-associated microbiomes in wild organisms.


Subject(s)
Gastrointestinal Microbiome/genetics , Genetic Variation , Smegmamorpha/microbiology , Animals , Environment , Genetics, Population , Geography , Host Microbial Interactions , Metagenomics , Microbiota , Oregon , Smegmamorpha/genetics
10.
Biol J Linn Soc Lond ; 128(2): 415-434, 2019 Oct.
Article in English | MEDLINE | ID: mdl-36846094

ABSTRACT

Species such as threespine stickleback (Gasterosteus aculeatus) that inhabit divergent selective environments and that have diversified on different time scales can be of value for understanding evolutionary processes. Here we synthesize high-resolution genotypic and phenotypic data to explore a largely unstudied distribution of threespine stickleback populations living in oceanic and freshwater habitats along coastal and inland regions of Oregon. Many inland aquatic habitats of Oregon remained unglaciated during the last ice age, meaning that some extant Oregon lake and river stickleback may have descended from freshwater populations established long before more well-studied, post-glacial freshwater populations. To address the degree of congruence between genetic and phenotypic divergence, we directly compared Oregon stickleback to much younger (post-glacial) Alaskan populations. We found phenotypic variation in Oregon stickleback to be primarily partitioned between oceanic and freshwater habitats, as has been documented in other stickleback systems. However, the main axis of genetic divergence was between coastal and inland regions regardless of habitat type. Furthermore, when comparing patterns between Oregon and Alaska we found similar levels of phenotypic divergence, but much greater genetic divergence among Oregon's populations. The Oregon stickleback system therefore appears well suited for future studies linking genotypic and phenotypic change, further extending the utility of this small fish to provide general insights into evolutionary processes.

11.
Evol Dev ; 19(6): 231-243, 2017 11.
Article in English | MEDLINE | ID: mdl-29115024

ABSTRACT

Comparing ontogenetic patterns within a well-described evolutionary context aids in inferring mechanisms of change, including heterochronies or deletion of developmental pathways. Because selection acts on phenotypes throughout ontogeny, any within-taxon developmental variation has implications for evolvability. We compare ontogenetic order and timing of locomotion and defensive traits in three populations of threespine stickleback that have evolutionarily divergent adult forms. This analysis adds to the growing understanding of developmental genetic mechanisms of adaptive change in this evolutionary model species by delineating when chondrogenesis and osteogenesis in two derived populations begin to deviate from the developmental pattern in their immediate ancestors. We found that differences in adult defensive morphologies arise through abolished or delayed initiation of these traits rather than via an overall heterochronic shift, that intra-population ontogenetic variation is increased for some derived traits, and that altered armor developmental timing differentiates the derived populations from each other despite parallels in adult lateral plate armor phenotypes. We found that changes in ossified elements of the pelvic armor are linked to delayed and incomplete development of an early-forming pelvic cartilage, and that this disruption likely presages the variable pelvic vestiges documented in many derived populations.


Subject(s)
Gene Expression Regulation, Developmental , Predatory Behavior , Selection, Genetic , Smegmamorpha/growth & development , Animals , Biological Evolution , Chondrogenesis , Osteogenesis , Phenotype , Quantitative Trait, Heritable , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics
12.
Dis Model Mech ; 9(2): 187-98, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26681746

ABSTRACT

Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD). The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish. The gnotobiotic stickleback model that we have developed therefore provides a platform for future studies mapping the natural genetic basis of the variation in immune response to microbes.


Subject(s)
Fishes/microbiology , Immunity, Innate , Intestines/microbiology , Microbiota , Animals , Fresh Water , Seawater
13.
Mol Ecol ; 22(11): 2864-83, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23718143

ABSTRACT

Understanding how genetic variation is partitioned across genomes within and among populations is a fundamental problem in ecological and evolutionary genetics. To address this problem, we studied the threespine stickleback fish, which has repeatedly undergone parallel phenotypic and genetic differentiation when oceanic fish have invaded freshwater habitats. While significant evolutionary genetic research has been performed using stickleback from geographic regions that have been deglaciated in the last 20 000 years, less research has focused on freshwater populations that predate the last glacial maximum. We performed restriction-site associated DNA-sequencing (RAD-seq) based population genomic analyses on stickleback from across Oregon, which was not glaciated during the last maximum. We sampled stickleback from coastal, Willamette Basin and central Oregon sites, analysed their genetic diversity using RAD-seq, performed structure analyses, reconstructed their phylogeographic history and tested the hypothesis of recent stickleback introduction into central Oregon, where incidence of this species was only recently documented. Our results showed a clear phylogeographic break between coastal and inland populations, with oceanic populations exhibiting the lowest levels of divergence from one another. Willamette Basin and central Oregon populations formed a clade of closely related populations, a finding consistent with a recent introduction of stickleback into central Oregon. Finally, genome-wide analysis of genetic diversity (π) and correlations of alleles within individuals in subpopulations (FIS) supported a role for introgressive hybridization in coastal populations and a recent expansion in central Oregon. Our results exhibit the power of next-generation sequencing genomic approaches such as RAD-seq to identify both historical population structure and recent colonization history.


Subject(s)
Phylogeography , Smegmamorpha/classification , Smegmamorpha/genetics , Animals , Base Sequence , Demography , Evolution, Molecular , Fresh Water , Genetic Variation , Genetics, Population , High-Throughput Nucleotide Sequencing , Ice Cover , Oregon , Sequence Analysis, DNA
14.
Evol Dev ; 14(4): 326-37, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22765204

ABSTRACT

Oceanic threespine sticklebacks have repeatedly and independently evolved new morphologies upon invasions of freshwater habitats. A consistent derived feature of the freshwater form across populations and geography is a shape change of the opercle, a large early developing facial bone. We show that the principal multivariate axis describing opercle shape development from the young larva to the full adult stage of oceanic fish matches the principal axis of evolutionary change associated with relocation from the oceanic to freshwater habitat. The opercle phenotype of freshwater adults closely resembles the phenotype of the bone in juveniles. Thus, evolution to the freshwater condition is in large part by truncation of development; the freshwater fish do not achieve the full ancestral adult bone shape. Additionally, the derived state includes dissociated ontogenetic changes. Dissociability may reflect an underlying modular pattern of opercle development, and facilitate flexibility of morphological evolution.


Subject(s)
Biological Evolution , Ecosystem , Phenotype , Smegmamorpha/physiology , Animals , Fresh Water , Seawater
15.
Evolution ; 66(2): 419-34, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22276538

ABSTRACT

Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance-covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture.


Subject(s)
Biological Evolution , Genetic Variation , Gills/anatomy & histology , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Alaska , Animals , Ecosystem , Fresh Water , Oregon , Phenotype
16.
Philos Trans R Soc Lond B Biol Sci ; 367(1587): 395-408, 2012 Feb 05.
Article in English | MEDLINE | ID: mdl-22201169

ABSTRACT

Population genomic studies are beginning to provide a more comprehensive view of dynamic genome-scale processes in evolution. Patterns of genomic architecture, such as genomic islands of increased divergence, may be important for adaptive population differentiation and speciation. We used next-generation sequencing data to examine the patterns of local and long-distance linkage disequilibrium (LD) across oceanic and freshwater populations of threespine stickleback, a useful model for studies of evolution and speciation. We looked for associations between LD and signatures of divergent selection, and assessed the role of recombination rate variation in generating LD patterns. As predicted under the traditional biogeographic model of unidirectional gene flow from ancestral oceanic to derived freshwater stickleback populations, we found extensive local and long-distance LD in fresh water. Surprisingly, oceanic populations showed similar patterns of elevated LD, notably between large genomic regions previously implicated in adaptation to fresh water. These results support an alternative biogeographic model for the stickleback radiation, one of a metapopulation with appreciable bi-directional gene flow combined with strong divergent selection between oceanic and freshwater populations. As predicted by theory, these processes can maintain LD within and among genomic islands of divergence. These findings suggest that the genomic architecture in oceanic stickleback populations may provide a mechanism for the rapid re-assembly and evolution of multi-locus genotypes in newly colonized freshwater habitats, and may help explain genetic mapping of parallel phenotypic variation to similar loci across independent freshwater populations.


Subject(s)
Adaptation, Biological/genetics , Genome , Linkage Disequilibrium , Smegmamorpha/genetics , Animals , Chromosomes/genetics , Ecosystem , Evolution, Molecular , Fresh Water , Gene Flow , Genetic Loci , Genetic Speciation , Genetic Variation , Genetics, Population , Haplotypes , Models, Genetic , Oceans and Seas , Phenotype , Recombination, Genetic , Selection, Genetic
17.
Evolution ; 65(4): 1203-11, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21463296

ABSTRACT

The role of environment as a selective agent is well-established. Environment might also influence evolution by altering the expression of genetic variation associated with phenotypes under selection. Far less is known about this phenomenon, particularly its contribution to evolution in novel environments. We investigated how environment affected the evolvability of body size in the threespine stickleback (Gasterosteus aculeatus). Gasterosteus aculeatus is well suited to addressing this question due to the rapid evolution of smaller size in the numerous freshwater populations established following the colonization of new freshwater habitats by an oceanic ancestor. The repeated, rapid evolution of size following colonization contrasts with the general observation of low phenotypic variation in oceanic stickleback. We reared an oceanic population of stickleback under high and low salinity conditions, mimicking a key component of the ancestral environment, and freshwater colonization, respectively. There was low genetic variation for body size under high salinity, but this variance increased significantly when fish were reared under low salinity. We therefore conclude that oceanic populations harbor the standing genetic variation necessary for the evolution of body size, but that this variation only becomes available to selection upon colonization of a new habitat.


Subject(s)
Biological Evolution , Body Size , Ecosystem , Genetic Variation , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Alaska , Analysis of Variance , Animals , Breeding/methods , Fresh Water , Models, Statistical , Salinity , Selection, Genetic
18.
Integr Comp Biol ; 50(6): 1067-80, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21558260

ABSTRACT

The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.


Subject(s)
Body Size , Genetic Variation , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Alaska , Analysis of Variance , Animals , Biological Evolution , Body Patterning , Environment , Phenotype , Smegmamorpha/growth & development
19.
PLoS One ; 3(10): e3376, 2008.
Article in English | MEDLINE | ID: mdl-18852878

ABSTRACT

Single nucleotide polymorphism (SNP) discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD) tags, which identified more than 13,000 SNPs, and mapped three traits in two model organisms, using less than half the capacity of one Illumina sequencing run. We demonstrated that different marker densities can be attained by choice of restriction enzyme. Furthermore, we developed a barcoding system for sample multiplexing and fine mapped the genetic basis of lateral plate armor loss in threespine stickleback by identifying recombinant breakpoints in F(2) individuals. Barcoding also facilitated mapping of a second trait, a reduction of pelvic structure, by in silico re-sorting of individuals. To further demonstrate the ease of the RAD sequencing approach we identified polymorphic markers and mapped an induced mutation in Neurospora crassa. Sequencing of RAD markers is an integrated platform for SNP discovery and genotyping. This approach should be widely applicable to genetic mapping in a variety of organisms.


Subject(s)
Chromosome Mapping/methods , Polymorphism, Single Nucleotide , Animals , Expressed Sequence Tags , Genetic Markers , Genome , Genotype , Methods , Neurospora crassa/genetics , Restriction Mapping , Smegmamorpha/genetics
20.
Proc Natl Acad Sci U S A ; 102(16): 5791-6, 2005 Apr 19.
Article in English | MEDLINE | ID: mdl-15824312

ABSTRACT

How do developmental mechanisms evolve to control changing skeletal morphology, the shapes and sizes of individual bones? We address this question with studies of the opercle (OP), a large facial bone that has undergone marked morphological evolution in the ray-finned fish. Attributes for developmental analysis motivated us to examine how OP shape and size evolve and develop in threespine sticklebacks, a model system for understanding vertebrate evolution. We find that when Alaskan anadromous fish take up permanent residence in lakes, they evolve smaller and reshaped OPs. The change is a reduction in the amount of bone laid down along one body axis, and it arises at or shortly after the onset of OP development. A quantitative trait locus is present on linkage group 19 that contributes in a major way to this phenotype.


Subject(s)
Biological Evolution , Facial Bones/anatomy & histology , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Alaska , Animals , Bone Development , Morphogenesis , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...