Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2562: 235-247, 2023.
Article in English | MEDLINE | ID: mdl-36272080

ABSTRACT

Embryo grafts have been an experimental pillar in developmental biology, and particularly, in amphibian biology. Grafts have been essential in constructing fate maps of different cell populations and migratory patterns. Likewise, autografts and allografts in older larvae or adult salamanders have been widely used to disentangle mechanisms of regeneration. The combination of transgenesis and grafting has widened even more the application of this technique.In this chapter, we provide a detailed protocol for embryo transplants in the axolotl (Ambystoma mexicanum ). The location and stages to label connective tissue, muscle, or blood vessels in the limb and blood cells in the whole animal. However, the potential of embryo transplants is enormous and impossible to cover in one chapter. Furthermore, we provide a protocol for blastema transplantation as an example of allograft in older larvae.


Subject(s)
Ambystoma mexicanum , Extremities , Animals , Ambystoma mexicanum/physiology , Extremities/physiology , Connective Tissue , Larva/physiology
2.
Nat Commun ; 13(1): 6949, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376278

ABSTRACT

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.


Subject(s)
Osteogenesis , Urodela , Animals , Bone and Bones , Cartilage , Cell Division , Mammals
3.
Elife ; 112022 10 11.
Article in English | MEDLINE | ID: mdl-36218256

ABSTRACT

Early events during axolotl limb regeneration include an immune response and the formation of a wound epithelium. These events are linked to a clearance of damaged tissue prior to blastema formation and regeneration of the missing structures. Here, we report the resorption of calcified skeletal tissue as an active, cell-driven, and highly regulated event. This process, carried out by osteoclasts, is essential for a successful integration of the newly formed skeleton. Indeed, the extent of resorption is directly correlated with the integration efficiency, and treatment with zoledronic acid resulted in osteoclast function inhibition and failed tissue integration. Moreover, we identified the wound epithelium as a regulator of skeletal resorption, likely releasing signals involved in recruitment/differentiation of osteoclasts. Finally, we reported a correlation between resorption and blastema formation, particularly, a coordination of resorption with cartilage condensation. In sum, our results identify resorption as a major event upon amputation, playing a critical role in the overall process of skeletal regeneration.


Subject(s)
Ambystoma mexicanum , Osteoclasts , Animals , Ambystoma mexicanum/physiology , Zoledronic Acid , Extremities/physiology , Skeleton
4.
Dev Dyn ; 251(9): 1389-1403, 2022 09.
Article in English | MEDLINE | ID: mdl-35170828

Subject(s)
Extremities
5.
Biol Open ; 8(7)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31278164

ABSTRACT

The heterogeneous properties of dermal cell populations have been posited to contribute toward fibrotic, imperfect wound healing in mammals. Here we characterize an adult population of dermal fibroblasts that maintain an active Prrx1 enhancer which originally marked mesenchymal limb progenitors. In contrast to their abundance in limb development, postnatal Prrx1 enhancer-positive cells (Prrx1enh+) make up a small subset of adult dermal cells (∼0.2%) and reside mainly within dermal perivascular and hair follicle niches. Lineage tracing of adult Prrx1enh+ cells shows that they remain in their niches and in small numbers over a long period of time. Upon injury however, Prrx1enh+ cells readily migrate into the wound bed and amplify, on average, 16-fold beyond their uninjured numbers. Additionally, following wounding dermal Prrx1enh+ cells are found out of their dermal niches and contribute to subcutaneous tissue. Postnatal Prrx1enh+ cells are uniquely injury-responsive despite being a meager minority in the adult skin.

6.
Science ; 362(6413)2018 10 26.
Article in English | MEDLINE | ID: mdl-30262634

ABSTRACT

Amputation of the axolotl forelimb results in the formation of a blastema, a transient tissue where progenitor cells accumulate prior to limb regeneration. However, the molecular understanding of blastema formation had previously been hampered by the inability to identify and isolate blastema precursor cells in the adult tissue. We have used a combination of Cre-loxP reporter lineage tracking and single-cell messenger RNA sequencing (scRNA-seq) to molecularly track mature connective tissue (CT) cell heterogeneity and its transition to a limb blastema state. We have uncovered a multiphasic molecular program where CT cell types found in the uninjured adult limb revert to a relatively homogenous progenitor state that recapitulates an embryonic limb bud-like phenotype including multipotency within the CT lineage. Together, our data illuminate molecular and cellular reprogramming during complex organ regeneration in a vertebrate.


Subject(s)
Cellular Reprogramming/physiology , Connective Tissue Cells/physiology , Forelimb/physiology , Regeneration/physiology , Ambystoma mexicanum , Animals , Cell Lineage , Cell Tracking , Genes, Reporter , Integrases , RNA, Messenger/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis , Stem Cells/physiology
7.
Curr Opin Cell Biol ; 55: 36-41, 2018 12.
Article in English | MEDLINE | ID: mdl-30031323

ABSTRACT

The process of building an organ, appendage, or organism requires the precise coordination of cells in space and time. Regeneration of those same tissues adds an additional element of complexity, emerging from the chaos of disease or injury to build a mass of progenitors from mature tissue. Translating insights from natural examples of tissue regeneration into engineered regenerative therapies requires a deep understanding of the journey of a cell directly following injury to its contribution to functional, scaled replacement tissue. Here we step through the chronological phases of regeneration and highlight emerging work that brings us closer to elucidating the unique intrinsic and extrinsic properties of cells during epimorphic regeneration.


Subject(s)
Cells/metabolism , Regeneration , Animals , Cell Dedifferentiation , Cell Movement , Signal Transduction , Wound Healing
8.
Elife ; 62017 04 17.
Article in English | MEDLINE | ID: mdl-28414273

ABSTRACT

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.


Subject(s)
Cartilage/embryology , Vertebrates/embryology , Animals , Computer Simulation , Mice , Models, Biological
9.
Dev Cell ; 39(4): 411-423, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27840105

ABSTRACT

Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema.


Subject(s)
Ambystoma mexicanum/physiology , Connective Tissue/physiology , Extremities/physiology , Imaging, Three-Dimensional , Regeneration/physiology , Stem Cells/cytology , Animals , Animals, Genetically Modified , Bone and Bones/physiology , Cell Movement , Cell Proliferation , Chondrocytes/cytology , Clone Cells , Dermis/cytology , Fibroblasts/cytology , Models, Biological , Pericytes/cytology , Platelet-Derived Growth Factor/metabolism , Signal Transduction , Time Factors
10.
Mol Biol Cell ; 25(16): 2375-92, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24966168

ABSTRACT

XMAP215 family members are potent microtubule (MT) polymerases, with mutants displaying reduced MT growth rates and aberrant spindle morphologies. XMAP215 proteins contain arrayed tumor overexpressed gene (TOG) domains that bind tubulin. Whether these TOG domains are architecturally equivalent is unknown. Here we present crystal structures of TOG4 from Drosophila Msps and human ch-TOG. These TOG4 structures architecturally depart from the structures of TOG domains 1 and 2, revealing a conserved domain bend that predicts a novel engagement with α-tubulin. In vitro assays show differential tubulin-binding affinities across the TOG array, as well as differential effects on MT polymerization. We used Drosophila S2 cells depleted of endogenous Msps to assess the importance of individual TOG domains. Whereas a TOG1-4 array largely rescues MT polymerization rates, mutating tubulin-binding determinants in any single TOG domain dramatically reduces rescue activity. Our work highlights the structurally diverse yet positionally conserved TOG array that drives MT polymerization.


Subject(s)
Drosophila Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Multimerization , Tubulin/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , Drosophila , Drosophila Proteins/genetics , Humans , Microtubule-Associated Proteins/genetics , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Spindle Apparatus , Tubulin/genetics , Xenopus , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
11.
Semin Cell Dev Biol ; 23(9): 954-62, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23059793

ABSTRACT

The outcome of wound repair in mammals is often characterized by fibrotic scaring. Vertebrates such as zebrafish, frogs, and salamanders not only heal scarlessly, but also can regenerate lost appendages. Decades of study on the process of animal regeneration has produced key insights into the mechanisms of how complex tissue is restored. By examining our current knowledge of regeneration, we can draw parallels with mammalian wound healing to identify the molecular determinants that produce such differing outcomes.


Subject(s)
Regeneration/physiology , Wound Healing/physiology , Animals , Anura/physiology , Cell Movement , Cicatrix/prevention & control , Dermis/cytology , Dermis/physiology , Epidermal Cells , Epidermis/physiology , Extracellular Matrix/physiology , Fibroblasts/cytology , Fibroblasts/physiology , Keratinocytes/cytology , Keratinocytes/physiology , Mammals/physiology , Re-Epithelialization/physiology , Species Specificity , Urodela/physiology
12.
Mol Biol Cell ; 22(22): 4343-61, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21965297

ABSTRACT

Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.


Subject(s)
Drosophila Proteins/metabolism , Microfilament Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Amino Acid Motifs , Animals , Cell Line , Drosophila , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubules/chemistry , Microtubules/genetics , Protein Binding , Protein Structure, Tertiary , RNA Interference , Spindle Apparatus/metabolism
13.
Nat Protoc ; 6(10): 1632-41, 2011 Sep 29.
Article in English | MEDLINE | ID: mdl-21959242

ABSTRACT

Cultured Drosophila melanogaster S2 and S2R+ cell lines have become important tools for uncovering fundamental aspects of cell biology as well as for gene discovery. Despite their utility, these cell lines are nonmotile and cannot build polarized structures or cell-cell contacts. Here we outline a previously isolated, but uncharacterized, Drosophila cell line named Dm-D17-c3 (or D17). These cells spread and migrate in culture, form cell-cell junctions and are susceptible to RNA interference (RNAi). Using this protocol, we describe how investigators, upon receiving cells from the Bloomington stock center, can culture cells and prepare the necessary reagents to plate and image migrating D17 cells; they can then be used to examine intracellular dynamics or observe loss-of-function RNAi phenotypes using an in vitro scratch or wound healing assay. From first thawing frozen ampules of D17 cells, investigators can expect to begin assaying RNAi phenotypes in D17 cells within roughly 2-3 weeks.


Subject(s)
Cell Culture Techniques , Cell Movement , Drosophila melanogaster/cytology , Animals , Cell Line , Culture Media, Conditioned , Drosophila melanogaster/genetics , Phenotype , RNA Interference , Transfection
14.
Nat Cell Biol ; 13(4): 361-70, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21378981

ABSTRACT

Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila katanin Dm-Kat60 functions to generate a dynamic cortical-microtubule interface in interphase cells. Dm-Kat60 concentrates at the cell cortex of S2 Drosophila cells during interphase, where it suppresses the polymerization of microtubule plus-ends, thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes at the leading edge of migratory D17 Drosophila cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes microtubules from their ends. On the basis of these data, we propose that Dm-Kat60 removes tubulin from microtubule lattice or microtubule ends that contact specific cortical sites to prevent stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in microtubule behaviours involved in cell migration.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Movement/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Microtubules/metabolism , Adenosine Triphosphatases/genetics , Animals , Cell Cycle/physiology , Cell Line , Cell Surface Extensions/metabolism , Cell Surface Extensions/ultrastructure , Cytoskeleton/metabolism , Drosophila Proteins/genetics , Humans , Katanin , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , RNA Interference , Tubulin/metabolism
15.
PLoS One ; 5(6): e11381, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20614032

ABSTRACT

BACKGROUND: Chemotherapeutic drugs often target the microtubule cytoskeleton as a means to disrupt cancer cell mitosis and proliferation. Anti-microtubule drugs inhibit microtubule dynamics, thereby triggering apoptosis when dividing cells activate the mitotic checkpoint. Microtubule dynamics are regulated by microtubule-associated proteins (MAPs); however, we lack a comprehensive understanding about how anti-microtubule agents functionally interact with MAPs. In this report, we test the hypothesis that the cellular levels of microtubule depolymerases, in this case kinesin-13 s, modulate the effectiveness of the microtubule disrupting drug colchicine. METHODOLOGY/PRINCIPAL FINDINGS: We used a combination of RNA interference (RNAi), high-throughput microscopy, and time-lapse video microscopy in Drosophila S2 cells to identify a specific MAP, kinesin-like protein 10A (KLP10A), that contributes to the efficacy of the anti-microtubule drug colchicine. KLP10A is an essential microtubule depolymerase throughout the cell cycle. We find that depletion of KLP10A in S2 cells confers resistance to colchicine-induced microtubule depolymerization to a much greater extent than depletion of several other destabilizing MAPs. Using image-based assays, we determined that control cells retained 58% (+/-2%SEM) of microtubule polymer when after treatment with 2 microM colchicine for 1 hour, while cells depleted of KLP10A by RNAi retained 74% (+/-1%SEM). Likewise, overexpression of KLP10A-GFP results in increased susceptibility to microtubule depolymerization by colchicine. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the efficacy of microtubule destabilization by a pharmacological agent is dependent upon the cellular expression of a microtubule depolymerase. These findings suggest that expression levels of Kif2A, the human kinesin-13 family member, may be an attractive biomarker to assess the effectiveness of anti-microtubule chemotherapies. Knowledge of how MAP expression levels affect the action of anti-microtubule drugs may prove useful for evaluating possible modes of cancer treatment.


Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Animals , Base Sequence , Cells, Cultured , DNA Primers , Drosophila , Microscopy, Fluorescence , Microtubules/drug effects , RNA Interference
16.
Curr Biol ; 15(14): 1276-85, 2005 Jul 26.
Article in English | MEDLINE | ID: mdl-16051170

ABSTRACT

BACKGROUND: Lamellipodial protrusion, which is the first step in cell movement, is driven by actin assembly and requires activity of the Arp2/3 actin-nucleating complex. However, it is unclear how actin assembly is dynamically regulated to support effective cell migration. RESULTS: Cells deficient in cortactin have impaired cell migration and invasion. Kymography analyses of live-cell imaging studies demonstrate that cortactin-knockdown cells have a selective defect in the persistence of lamellipodial protrusions. The motility and protrusion defects are fully rescued by cortactin molecules, provided both the Arp2/3 complex and F-actin binding sites are intact. Consistent with this requirement for simultaneous contacts with Arp2/3 and F-actin, cortactin is recruited by Arp2/3 complex to lamellipodia and binds with a higher affinity to ATP/ADP-Pi-F-actin than to ADP-F-actin. In situ labeling of lamellipodia revealed that the relative levels of free barbed ends of actin filaments are reduced by over 30% in the cortactin-knockdown cells; however, there is no change in Arp2/3-complex localization to lamellipodia. Cortactin-knockdown cells also have a selective defect in the assembly of new adhesions in protrusions, as assessed by analysis of GFP-paxillin dynamics in living cells. CONCLUSIONS: Cortactin enhances lamellipodial persistence, at least in part through regulation of Arp2/3 complex. The presence of cortactin also enhances the rate of new adhesion formation in lamellipodia. In vivo, these functions may be important during directed cell motility.


Subject(s)
Actins/metabolism , Cell Movement/physiology , Cytoskeletal Proteins/metabolism , Microfilament Proteins/metabolism , Pseudopodia/metabolism , Actin-Related Protein 2 , Actin-Related Protein 3 , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Base Sequence , Blotting, Western , Cell Line , Cortactin , Humans , Kymography , Microfilament Proteins/genetics , Microscopy, Fluorescence , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...