Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38765999

ABSTRACT

Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.

2.
J Exp Clin Cancer Res ; 43(1): 97, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561833

ABSTRACT

BACKGROUND: CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS: We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS: Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS: This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.


Subject(s)
Bone Neoplasms , Diterpenes , Osteosarcoma , Humans , Protein Kinase C-alpha/metabolism , B7 Antigens/genetics , B7 Antigens/metabolism , Osteosarcoma/metabolism , Bone Neoplasms/pathology , T-Lymphocytes , Cytokines/metabolism , Cell Line, Tumor
3.
Nat Commun ; 14(1): 7332, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957169

ABSTRACT

Combination chemotherapy is crucial for successfully treating cancer. However, the enormous number of possible drug combinations means discovering safe and effective combinations remains a significant challenge. To improve this process, we conduct large-scale targeted CRISPR knockout screens in drug-treated cells, creating a genetic map of druggable genes that sensitize cells to commonly used chemotherapeutics. We prioritize neuroblastoma, the most common extracranial pediatric solid tumor, where ~50% of high-risk patients do not survive. Our screen examines all druggable gene knockouts in 18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs, resulting in 94,320 unique combination-cell line perturbations, which is comparable to the largest existing drug combination screens. Using dense drug-drug rescreening, we find that the top CRISPR-nominated drug combinations are more synergistic than standard-of-care combinations, suggesting existing combinations could be improved. As proof of principle, we discover that inhibition of PRKDC, a component of the non-homologous end-joining pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug doxorubicin in vitro and in vivo using patient-derived xenograft (PDX) models. Our findings provide a valuable resource and demonstrate the feasibility of using targeted CRISPR knockout to discover combinations with common chemotherapeutics, a methodology with application across all cancers.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Neuroblastoma , Humans , Child , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Gene Knockout Techniques , Drug Combinations , Cell Line, Tumor
5.
Nat Commun ; 14(1): 809, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781850

ABSTRACT

Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proteasome Endopeptidase Complex , Infant , Adult , Humans , Child , Proteasome Endopeptidase Complex/genetics , Lysine/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptome
6.
Nat Commun ; 12(1): 4089, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215733

ABSTRACT

Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


Subject(s)
Genetic Heterogeneity/drug effects , Glioma/drug therapy , Glioma/genetics , Animals , Brain Neoplasms , Cell Line, Tumor , Cell Proliferation , Child , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Glioma/pathology , High-Throughput Screening Assays , Humans , Mice , Mutation , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays
7.
iScience ; 24(1): 101996, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33490904

ABSTRACT

Histone lysine demethylases (KDMs) play critical roles in oncogenesis and therefore may be effective targets for anticancer therapy. Using a time-resolved fluorescence resonance energy transfer demethylation screen assay, in combination with multiple orthogonal validation approaches, we identified geldanamycin and its analog 17-DMAG as KDM inhibitors. In addition, we found that these Hsp90 inhibitors increase degradation of the alveolar rhabdomyosarcoma (aRMS) driver oncoprotein PAX3-FOXO1 and induce the repressive epigenetic mark H3K9me3 and H3K36me3 at genomic loci of PAX3-FOXO1 targets. We found that as monotherapy 17-DMAG significantly inhibits expression of PAX3-FOXO1 target genes and multiple oncogenic pathways, induces a muscle differentiation signature, delays tumor growth and extends survival in aRMS xenograft mouse models. The combination of 17-DMAG with conventional chemotherapy significantly enhances therapeutic efficacy, indicating that targeting KDM in combination with chemotherapy may serve as a therapeutic approach to PAX3-FOXO1-positive aRMS.

8.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: mdl-33268358

ABSTRACT

Hearing loss caused by noise, aging, antibiotics, and chemotherapy affects 10% of the world population, yet there are no Food and Drug Administration (FDA)-approved drugs to prevent it. Here, we screened 162 small-molecule kinase-specific inhibitors for reduction of cisplatin toxicity in an inner ear cell line and identified dabrafenib (TAFINLAR), a BRAF kinase inhibitor FDA-approved for cancer treatment. Dabrafenib and six additional kinase inhibitors in the BRAF/MEK/ERK cellular pathway mitigated cisplatin-induced hair cell death in the cell line and mouse cochlear explants. In adult mice, oral delivery of dabrafenib repressed ERK phosphorylation in cochlear cells, and protected from cisplatin- and noise-induced hearing loss. Full protection was achieved in mice with co-treatment with oral AZD5438, a CDK2 kinase inhibitor. Our study explores a previously unidentified cellular pathway and molecular target BRAF kinase for otoprotection and may advance dabrafenib into clinics to benefit patients with cisplatin- and noise-induced ototoxicity.


Subject(s)
Antineoplastic Agents , Deafness , Hearing Loss , Animals , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Hair Cells, Auditory , Hearing Loss/etiology , Hearing Loss/prevention & control , Humans , Mice , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism
9.
Exp Hematol Oncol ; 8: 30, 2019.
Article in English | MEDLINE | ID: mdl-31788346

ABSTRACT

BACKGROUND: Medulloblastoma is the most frequently occurring malignant brain tumor in children. Current treatment strategies for medulloblastoma include aggressive surgery, cranio-spinal irradiation and adjuvant chemotherapy. Because current treatments can cause severe long-term side effects and are not curative, successful treatment remains a challenge. METHODS: In this study, we employed a high-throughput cell viability assay to screen 12,800 compounds and to identify drug candidates with anti-proliferative properties for medulloblastoma cells. We also tested these compounds for attenuating medulloblastoma tumor development using mouse xenografts. RESULTS: We identified two histone deacetylase inhibitors (dacinostat and quisinostat) with anti-proliferative properties for medulloblastoma cells. We showed that both compounds induce cytotoxicity, trigger cell apoptosis, and block cell cycle progression at the G2/M phase. In addition, dacinostat and quisinostat attenuated xenograft medulloblastoma growth in mice. CONCLUSIONS: Our findings suggest that histone deacetylase inhibitors are potent therapeutic agents against medulloblastoma.

10.
J Med Chem ; 61(17): 7700-7709, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30091915

ABSTRACT

There are currently no FDA-approved therapies to prevent the hearing loss associated with the usage of cisplatin in chemotherapeutic regimens. We recently demonstrated that the pharmacologic inhibition with kenpaullone or genetic deletion of CDK2 preserved hearing function in animal models treated with cisplatin, which suggests that CDK2 is a promising therapeutic target to prevent cisplatin-induced ototoxicity. In this study, we identified two lead compounds, AT7519 and AZD5438, from a focused library screen of 187 CDK2 inhibitors, performed in an immortalized cell line derived from neonatal mouse cochleae treated with cisplatin. Moreover, we screened 36 analogues of AT7519 and identified analogue 7, which exhibited an improved therapeutic index. When delivered locally, analogue 7 and AZD5438 both provided significant protection against cisplatin-induced ototoxicity in mice. Thus, we have identified two additional compounds that prevent cisplatin-induced ototoxicity in vivo and provided further evidence that CDK2 is a druggable target for treating cisplatin-induced ototoxicity.


Subject(s)
Cisplatin/adverse effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Hearing Loss/chemically induced , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/adverse effects , Cochlea/drug effects , Drug Evaluation, Preclinical/methods , Hearing Loss/prevention & control , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Mice, Inbred Strains , Organ Culture Techniques , Protective Agents/chemistry , Protective Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship
11.
J Exp Med ; 215(4): 1187-1203, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29514916

ABSTRACT

Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss.


Subject(s)
Cisplatin/adverse effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Hearing Loss, Noise-Induced/chemically induced , Hearing Loss, Noise-Induced/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Benzazepines/pharmacology , Benzazepines/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Cytoprotection/drug effects , Drug Resistance , Germ Cells/metabolism , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Indoles/pharmacology , Indoles/therapeutic use , Lateral Line System/drug effects , Lateral Line System/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Rats , Reactive Oxygen Species/metabolism , Small Molecule Libraries/analysis , Zebrafish
12.
Assay Drug Dev Technol ; 15(8): 383-394, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29112465

ABSTRACT

Human pregnane X receptor (hPXR) is a nuclear receptor that regulates the expression of phase I and phase II drug-metabolism enzymes, as well as that of drug transporters. hPXR is a "xenobiotics sensor" and can be activated by structurally diverse compounds. The activation of hPXR by its agonists increases the clearance of xenobiotics by increasing the expression of drug-metabolism enzymes and drug transporters, possibly leading to drug toxicity, drug resistance, and other adverse drug reactions. Therefore, hPXR antagonists might attenuate agonist-mediated activation of hPXR and reduce the risk of adverse drug reactions. Several hPXR antagonists have been reported, but none of them is specific for hPXR. In this study, we present the first large-scale, unbiased, cell-based high-throughput screen to identify specific hPXR antagonists. Among the 132,975 compounds screened, we identified the 1,4,5-substituted 1,2,3-triazole analogs as potent and specific hPXR antagonists by sequentially performing primary screening, retesting, and dose-response analysis using cell-based hPXR gene reporter and receptor binding assays, as well as receptor and promoter specificity assays. The compound SJ000076745-1 is the most potent and specific hPXR antagonist in the 1,4,5-substituted 1,2,3-triazole chemical class, having a cell-based hPXR antagonist 50% inhibitory concentration (IC50) value of 377 ± 16 nM and an hPXR binding inhibitory IC50 value of 563 ± 40 nM.


Subject(s)
High-Throughput Screening Assays , Receptors, Steroid/antagonists & inhibitors , Triazoles/analysis , Triazoles/pharmacology , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Molecular Structure , Pregnane X Receptor , Structure-Activity Relationship , Tumor Cells, Cultured
13.
PLoS One ; 11(2): e0149439, 2016.
Article in English | MEDLINE | ID: mdl-26886014

ABSTRACT

Phenotypic screening through high-content automated microscopy is a powerful tool for evaluating the mechanism of action of candidate therapeutics. Despite more than a decade of development, however, high content assays have yielded mixed results, identifying robust phenotypes in only a small subset of compound classes. This has led to a combinatorial explosion of assay techniques, analyzing cellular phenotypes across dozens of assays with hundreds of measurements. Here, using a minimalist three-stain assay and only 23 basic cellular measurements, we developed an analytical approach that leverages informative dimensions extracted by linear discriminant analysis to evaluate similarity between the phenotypic trajectories of different compounds in response to a range of doses. This method enabled us to visualize biologically-interpretable phenotypic tracks populated by compounds of similar mechanism of action, cluster compounds according to phenotypic similarity, and classify novel compounds by comparing them to phenotypically active exemplars. Hierarchical clustering applied to 154 compounds from over a dozen different mechanistic classes demonstrated tight agreement with published compound mechanism classification. Using 11 phenotypically active mechanism classes, classification was performed on all 154 compounds: 78% were correctly identified as belonging to one of the 11 exemplar classes or to a different unspecified class, with accuracy increasing to 89% when less phenotypically active compounds were excluded. Importantly, several apparent clustering and classification failures, including rigosertib and 5-fluoro-2'-deoxycytidine, instead revealed more complex mechanisms or off-target effects verified by more recent publications. These results show that a simple, easily replicated, minimalist high-content assay can reveal subtle variations in the cellular phenotype induced by compounds and can correctly predict mechanism of action, as long as the appropriate analytical tools are used.


Subject(s)
Microscopy/methods , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Cluster Analysis , DNA Damage , Discriminant Analysis , HeLa Cells , Histones/metabolism , Humans , Phenotype , Principal Component Analysis
14.
PLoS One ; 11(1): e0146570, 2016.
Article in English | MEDLINE | ID: mdl-26752700

ABSTRACT

Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition.


Subject(s)
Down Syndrome/complications , Down Syndrome/genetics , Keratinocytes/cytology , Skin Neoplasms/etiology , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Disease Models, Animal , Incidence , Mice , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics
15.
J Cell Sci ; 125(Pt 18): 4207-13, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22641692

ABSTRACT

Sonic hedgehog (Shh) signaling is essential to the patterning of the embryonic neural tube, but its presence and function in the postmitotic differentiated neurons in the brain remain largely uncharacterized. We recently showed that Shh and its signaling components, Patched and Smoothened, are expressed in postnatal and adult hippocampal neurons. We have now examined whether Shh signaling has a function in these neurons. Using cultured hippocampal neurons as a model system, we found that presynaptic terminals become significantly larger in response to the application of Shh. Ultrastructural examination confirmed the enlarged presynaptic profiles and also revealed variable increases in the size of synaptic vesicles, with a resulting loss of uniformity. Furthermore, electrophysiological analyses showed significant increases in the frequency, but not the amplitude, of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in response to Shh, providing functional evidence of the selective role of Shh in presynaptic terminals. Thus, we conclude that Shh signaling regulates the structure and functional properties of presynaptic terminals of hippocampal neurons.


Subject(s)
Hedgehog Proteins/metabolism , Hippocampus/cytology , Presynaptic Terminals/physiology , Presynaptic Terminals/ultrastructure , Animals , HEK293 Cells , Humans , Neurotransmitter Agents/metabolism , Organ Size , Presynaptic Terminals/metabolism , Rats , Signal Transduction , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure
16.
Prog Brain Res ; 197: 223-36, 2012.
Article in English | MEDLINE | ID: mdl-22541295

ABSTRACT

The hedgehog (HH) family of growth factors is involved in many aspects of growth and development, from the establishment of left-right axes at gastrulation to the patterning and formation of multiple structures in essentially every tissue, to the maintenance and regulation of stem cell populations in adults. Sonic hedgehog (Shh) in particular acts as a mitogen, regulating proliferation of target cells, a growth factor that triggers differentiation in target populations, and a morphogen causing cells to respond differently based on their positions along a spatial and temporal concentration gradient. Given its very broad range of effects in development, it is not surprising that many of the structures affected by a disruption in Shh signaling are also affected in Down syndrome (DS). However, recent studies have shown that trisomic cerebellar granule cell precursors have a deficit, compared to their euploid counterparts, in their response to the mitogenic effects of Shh. This deficit substantially contributes to the hypocellular cerebellum in mouse models that parallels the human DS phenotype and can be corrected in early development by a single exposure to a small-molecule agonist of the Shh pathway. Here, we consider how an attenuated Shh response might affect several aspects of development to produce multiple phenotypic outcomes observed in DS.


Subject(s)
Down Syndrome/pathology , Hedgehog Proteins/deficiency , Signal Transduction/physiology , Trisomy/pathology , Animals , Cardiovascular System/physiopathology , Disease Models, Animal , Facial Bones/pathology , Hedgehog Proteins/genetics , Humans , Mice , Mutation/genetics , Skull/pathology
17.
J Natl Cancer Inst ; 103(12): 962-78, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21653923

ABSTRACT

BACKGROUND: Chromosomal translocations generating oncogenic transcription factors are the hallmark of a variety of tumors, including many sarcomas. Ewing sarcoma family of tumors (ESFTs) are characterized by the t(11;22)(q24;q12) translocation that generates the Ewing sarcoma breakpoint region 1 and Friend leukemia virus integration 1 (EWS-FLI1) fusion transcription factor responsible for the highly malignant phenotype of this tumor. Although continued expression of EWS-FLI1 is believed to be critical for ESFT cell survival, a clinically effective small-molecule inhibitor remains elusive likely because EWS-FLI1 is a transcription factor and therefore widely felt to be "undruggable." METHODS: We developed a high-throughput screen to evaluate more than 50 000 compounds for inhibition of EWS-FLI1 activity in TC32 ESFT cells. We used a TC32 cell-based luciferase reporter screen using the EWS-FLI1 downstream target NR0B1 promoter and a gene signature secondary screen to sort and prioritize the compounds. We characterized the lead compound, mithramycin, based on its ability to inhibit EWS-FLI1 activity in vitro using microarray expression profiling, quantitative reverse transcription-polymerase chain reaction, and immunoblot analysis, and in vivo using immunohistochemistry. We studied the impact of this inhibition on cell viability in vitro and on tumor growth in ESFT xenograft models in vivo (n = 15-20 mice per group). All statistical tests were two-sided. RESULTS: Mithramycin inhibited expression of EWS-FLI1 downstream targets at the mRNA and protein levels and decreased the growth of ESFT cells at half maximal inhibitory concentrations between 10 (95% confidence interval [CI] = 8 to 13 nM) and 15 nM (95% CI = 13 to 19 nM). Mithramycin suppressed the growth of two different ESFT xenograft tumors and prolonged the survival of ESFT xenograft-bearing mice by causing a decrease in mean tumor volume. For example, in the TC32 xenograft model, on day 15 of treatment, the mean tumor volume for the mithramycin-treated mice was approximately 3% of the tumor volume observed in the control mice (mithramycin vs control: 69 vs 2388 mm(3), difference = 2319 mm(3), 95% CI = 1766 to 2872 mm(3), P < .001). CONCLUSION: Mithramycin inhibits EWS-FLI1 activity and demonstrates ESFT antitumor activity both in vitro and in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , High-Throughput Screening Assays/methods , Oncogene Proteins, Fusion/drug effects , Oncogene Proteins, Fusion/genetics , Plicamycin/pharmacology , Proto-Oncogene Protein c-fli-1/drug effects , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/drug effects , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , DNA Damage/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunoblotting , Immunohistochemistry , Mice , Microscopy, Confocal , Protein Array Analysis , Reverse Transcriptase Polymerase Chain Reaction , Sarcoma, Ewing/drug therapy , Transcription Factors/genetics , Transcription, Genetic/drug effects , Translocation, Genetic/drug effects , Transplantation, Heterologous
18.
BMC Med Genet ; 10: 93, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19761602

ABSTRACT

BACKGROUND: Meiotic crossovers are the major mechanism by which haplotypes are shuffled to generate genetic diversity. Previously available methods for the genome-wide, high-resolution identification of meiotic crossover sites are limited by the laborious nature of the assay (as in sperm typing). METHODS: Several methods have been introduced to identify crossovers using high density single nucleotide polymorphism (SNP) array technologies, although programs are not widely available to implement such analyses. RESULTS: Here we present a two-generation "reverse pedigree analysis" method (analyzing the genotypes of two children relative to each parent) and a web-accessible tool to determine and visualize inheritance differences among siblings and crossover locations on each parental gamete. This approach is complementary to existing methods and uses informative markers which provide high resolution for locating meiotic crossover sites. We introduce a segmentation algorithm to identify crossover sites, and used a synthetic data set to determine that the segmentation algorithm specificity was 92% and sensitivity was 89%. The use of reverse pedigrees allows the inference of crossover locations on the X chromosome in a maternal gamete through analysis of two sons and their father. We further analyzed genotypes from eight multiplex autism families, observing a 1.462 maternal to paternal recombination ratio and no significant differences between affected and unaffected children. Meiotic recombination results from pediSNP can also be used to identify haplotypes that are shared by probands within a pedigree, as we demonstrated with a multiplex autism family. CONCLUSION: Using "reverse pedigrees" and defining unique sets of genotype markers within pedigree data, we introduce a method that identifies inherited allelic differences and meiotic crossovers. We implemented the method in the pediSNP software program, and we applied it to several data sets. This approach uses data from two generations to identify crossover sites, facilitating studies of recombination in disease. pediSNP is available online at http://pevsnerlab.kennedykrieger.org/pediSNP.


Subject(s)
Crossing Over, Genetic , Inheritance Patterns , Meiosis , Models, Genetic , Pedigree , Adult , Child , Genetic Markers , Genotype , Humans , Polymorphism, Single Nucleotide
19.
Cancer Res ; 68(19): 8039-48, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18829562

ABSTRACT

Insulin-like growth factor I receptor (IGF-IR) and its ligands are overexpressed by tumors, mediating proliferation and protecting against stress-induced apoptosis. Accordingly, there has been a considerable amount of interest in developing therapeutic agents against IGF-IR. IGF-IR is believed to be ubiquitously expressed without detectable mutation or amplification in cancer. We explored the determinants of cellular response to a humanized anti-IGF-IR antibody. Our results showed a large variation in IGF-IR levels in rhabdomyosarcoma tumor specimens that were comparable with those in rhabdomyosarcoma cell lines. In vitro analysis revealed a direct and very significant correlation between elevated IGF-IR levels and antiproliferative effects of the antibody and defined a receptor number that would predict sensitivity. Our data further suggested a strong dependence on IGF-IR for AKT signaling in cells with elevated IGF-IR. The sensitivity of the high IGF-IR-expressing cells was blocked with a constitutively active AKT. The extracellular signal-regulated kinase pathway was not affected by the antibody. In vivo studies showed that anti-IGF-IR had single-agent antitumor activity; furthermore, predictions of responses based on IGF-IR levels were accurate. In vivo biomarker analysis suggested that h7C10 down-regulated both IGF-IR and p-AKT initially, concordant with antitumor activity. Subsequent progression of tumors was associated with reactivation of p-AKT despite sustained suppression of IGF-IR. These results identified the first predictive biomarker for anti-IGF-IR therapies in cancer.


Subject(s)
Antibodies/therapeutic use , Insulin-Like Growth Factor I/genetics , Neoplasms, Hormone-Dependent/therapy , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Rhabdomyosarcoma/therapy , Animals , Antibodies/pharmacology , Cell Proliferation/drug effects , Drug Delivery Systems , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/physiology , Mice , Mice, SCID , Neoplasms, Hormone-Dependent/genetics , Neoplasms, Hormone-Dependent/metabolism , Proto-Oncogene Proteins c-akt/genetics , Receptor, IGF Type 1/immunology , Receptor, IGF Type 1/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...