Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
N Engl J Med ; 387(25): 2344-2355, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36546626

ABSTRACT

BACKGROUND: The DNA-repair enzyme Artemis is essential for rearrangement of T- and B-cell receptors. Mutations in DCLRE1C, which encodes Artemis, cause Artemis-deficient severe combined immunodeficiency (ART-SCID), which is poorly responsive to allogeneic hematopoietic-cell transplantation. METHODS: We carried out a phase 1-2 clinical study of the transfusion of autologous CD34+ cells, transfected with a lentiviral vector containing DCLRE1C, in 10 infants with newly diagnosed ART-SCID. We followed them for a median of 31.2 months. RESULTS: Marrow harvest, busulfan conditioning, and lentiviral-transduced CD34+ cell infusion produced the expected grade 3 or 4 adverse events. All the procedures met prespecified criteria for feasibility at 42 days after infusion. Gene-marked T cells were detected at 6 to 16 weeks after infusion in all the patients. Five of 6 patients who were followed for at least 24 months had T-cell immune reconstitution at a median of 12 months. The diversity of T-cell receptor ß chains normalized by 6 to 12 months. Four patients who were followed for at least 24 months had sufficient B-cell numbers, IgM concentration, or IgM isohemagglutinin titers to permit discontinuation of IgG infusions. Three of these 4 patients had normal immunization responses, and the fourth has started immunizations. Vector insertion sites showed no evidence of clonal expansion. One patient who presented with cytomegalovirus infection received a second infusion of gene-corrected cells to achieve T-cell immunity sufficient for viral clearance. Autoimmune hemolytic anemia developed in 4 patients 4 to 11 months after infusion; this condition resolved after reconstitution of T-cell immunity. All 10 patients were healthy at the time of this report. CONCLUSIONS: Infusion of lentiviral gene-corrected autologous CD34+ cells, preceded by pharmacologically targeted low-exposure busulfan, in infants with newly diagnosed ART-SCID resulted in genetically corrected and functional T and B cells. (Funded by the California Institute for Regenerative Medicine and the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT03538899.).


Subject(s)
Genetic Therapy , Severe Combined Immunodeficiency , Humans , Infant , Busulfan/therapeutic use , Genetic Therapy/adverse effects , Genetic Therapy/methods , Immunoglobulin M , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/therapy , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , Antigens, CD34/administration & dosage , Antigens, CD34/immunology , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods , Lentivirus , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/therapeutic use , T-Lymphocytes/immunology , B-Lymphocytes/immunology
2.
Int J Neonatal Screen ; 8(4)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36278621

ABSTRACT

Newborn screening was established over 50 years ago to identify cases of disorders that were serious, urgent, and treatable, mirroring the criteria of Wilson and Jungner. In the last decade, conditions have been added to newborn screening that do not strictly meet these criteria, and genomic newborn screening is beginning to be discussed. Some of these new and proposed additions to newborn screening entail serious public health ethical issues that need to be explored.

3.
Front Genet ; 13: 867337, 2022.
Article in English | MEDLINE | ID: mdl-35938011

ABSTRACT

Each year, through population-based newborn screening (NBS), 1 in 294 newborns is identified with a condition leading to early treatment and, in some cases, life-saving interventions. Rapid advancements in genomic technologies to screen, diagnose, and treat newborns promise to significantly expand the number of diseases and individuals impacted by NBS. However, expansion of NBS occurs slowly in the United States (US) and almost always occurs condition by condition and state by state with the goal of screening for all conditions on a federally recommended uniform panel. The Newborn Screening Translational Research Network (NBSTRN) conducted the NBS Expansion Study to describe current practices, identify expansion challenges, outline areas for improvement in NBS, and suggest how models could be used to evaluate changes and improvements. The NBS Expansion Study included a workshop of experts, a survey of clinicians, an analysis of data from online repositories of state NBS programs, reports and publications of completed pilots, federal committee reports, and proceedings, and the development of models to address the study findings. This manuscript (Part One) reports on the design, execution, and results of the NBS Expansion Study. The Study found that the capacity to expand NBS is variable across the US and that nationwide adoption of a new condition averages 9.5 years. Four factors that delay and/or complicate NBS expansion were identified. A companion paper (Part Two) presents a use case for each of the four factors and highlights how modeling could address these challenges to NBS expansion.

4.
Am J Med Genet C Semin Med Genet ; 190(2): 222-230, 2022 06.
Article in English | MEDLINE | ID: mdl-35838066

ABSTRACT

In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.


Subject(s)
Neonatal Screening , Neurodevelopmental Disorders , Infant , Infant, Newborn , Humans , Neonatal Screening/methods , Pilot Projects , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Parents
5.
PLoS One ; 17(1): e0260755, 2022.
Article in English | MEDLINE | ID: mdl-34986155

ABSTRACT

Nearly all annual blooms of the toxic dinoflagellate Karenia brevis (K. brevis) pose a serious threat to coastal Southwest Florida. These blooms discolor water, kill fish and marine mammals, contaminate shellfish, cause mild to severe respiratory irritation, and discourage tourism and recreational activities, leading to significant health and economic impacts in affected communities. Despite these issues, we still lack standard measures suitable for assessing bloom severity or for evaluating the efficacy of modeling efforts simulating bloom initiation and intensity. In this study, historical cell count observations along the southwest Florida shoreline from 1953 to 2019 were used to develop monthly and annual bloom severity indices (BSI). Similarly, respiratory irritation observations routinely reported in Sarasota and Manatee Counties from 2006 to 2019 were used to construct a respiratory irritation index (RI). Both BSI and RI consider spatial extent and temporal evolution of the bloom, and can be updated routinely and used as objective criteria to aid future socioeconomic and scientific studies of K. brevis. These indices can also be used to help managers and decision makers both evaluate the risks along the coast during events and design systems to better respond to and mitigate bloom impacts. Before 1995, sampling was done largely in response to reports of discolored water, fish kills, or respiratory irritation. During this timeframe, lack of sampling during the fall, when blooms typically occur, generally coincided with periods of more frequent-than-usual offshore winds. Consequently, some blooms may have been undetected or under-sampled. As a result, the BSIs before 1995 were likely underestimated and cannot be viewed as accurately as those after 1995. Anomalies in the frequency of onshore wind can also largely account for the discrepancies between BSI and RI during the period from 2006 to 2019. These findings highlighted the importance of onshore wind anomalies when predicting respiratory irritation impacts along beaches.


Subject(s)
Dinoflagellida/growth & development , Forecasting/methods , Harmful Algal Bloom/physiology , Dinoflagellida/pathogenicity , Florida , Humans , Marine Toxins/analysis , Respiratory System , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology
6.
Catal Sci Technol ; 12(23): 7182-7189, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-37192930

ABSTRACT

Formic acid is unique among liquid organic hydrogen carriers (LOHCs), because its dehydrogenation is highly entropically driven. This enables the evolution of high-pressure hydrogen at mild temperatures that is difficult to achieve with other LOHCs, conceptually by releasing the "spring" of energy stored entropically in the liquid carrier. Applications calling for hydrogen-on-demand, such as vehicle filling, require pressurized H2. Hydrogen compression dominates the cost for such applications, yet there are very few reports of selective, catalytic dehydrogenation of formic acid at elevated pressure. Herein, we show that homogenous catalysts with various ligand frameworks, including Noyori-type tridentate (PNP, SNS, SNP, SNPO), bidentate chelates (pyridyl)NHC, (pyridyl)phosphine, (pyridyl)sulfonamide, and their metallic precursors, are suitable catalysts for the dehydrogenation of neat formic acid under self-pressurizing conditions. Quite surprisingly, we discovered that their structural differences can be related to performance differences in their respective structural families, with some tolerant or intolerant of pressure and others that are significantly advantaged by pressurized conditions. We further find important roles for H2 and CO in catalyst activation and speciation. In fact, for certain systems, CO behaves as a healing reagent when trapped in a pressurizing reactor system, enabling extended life from systems that would be otherwise deactivated.

7.
J Phys Chem B ; 125(18): 4794-4807, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33938730

ABSTRACT

Experimental data suggest that the solubility of copper in high-temperature water vapor is controlled by the formation of hydrated clusters of the form CuCl(H2O)n, where the average number of water molecules in the cluster generally increases with increasing density [Migdisov, A. A.; et al. Geochim. Cosmochim. Acta 2014, 129, 33-53]. However, the precise nature of these clusters is difficult to probe experimentally. Moreover, there are some discrepancies between experimental estimates of average cluster size and prior simulation work [Mei, Y. Geofluids 2018, 2018, 4279124]. We have performed first-principles Monte Carlo (MC) and molecular dynamics (MD) simulations to explore these clusters in finer detail. We find that molecular dynamics is not the most appropriate technique for studying aggregation in vapor phases, even at relatively high temperatures. Specifically, our MD simulations exhibit substantial problems in adequately sampling the equilibrium cluster size distribution. In contrast, MC simulations with specialized cluster moves are able to accurately sample the phase space of hydrogen-bonding vapors. At all densities, we find a stable, slightly distorted linear H2O-Cu-Cl structure, which is in agreement with the earlier simulations, surrounded by a variable number of water molecules. The surrounding water molecules do not form a well-defined second solvation shell but rather a loose network of hydrogen-bonded water with molecular CuCl on the outside edge of the water cluster. We also find a broad distribution of hydration numbers, especially at higher densities. In contrast to previous simulation work but in agreement with experimental data, we find that the average hydration number substantially increases with increasing density. Moreover, the value of the hydration number depends on the choice of cluster definition.

8.
Int J Neonatal Screen ; 7(2)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922835

ABSTRACT

Newborn screening for congenital hypothyroidism remains challenging decades after broad implementation worldwide. Testing protocols are not uniform in terms of targets (TSH and/or T4) and protocols (parallel vs. sequential testing; one or two specimen collection times), and specificity (with or without collection of a second specimen) is overall poor. The purpose of this retrospective study is to investigate the potential impact of multivariate pattern recognition software (CLIR) to improve the post-analytical interpretation of screening results. Seven programs contributed reference data (N = 1,970,536) and two sets of true (TP, N = 1369 combined) and false (FP, N = 15,201) positive cases for validation and verification purposes, respectively. Data were adjusted for age at collection, birth weight, and location using polynomial regression models of the fifth degree to create three-dimensional regression surfaces. Customized Single Condition Tools and Dual Scatter Plots were created using CLIR to optimize the differential diagnosis between TP and FP cases in the validation set. Verification testing correctly identified 446/454 (98%) of the TP cases, and could have prevented 1931/5447 (35%) of the FP cases, with variable impact among locations (range 4% to 50%). CLIR tools either as made here or preferably standardized to the recommended uniform screening panel could improve performance of newborn screening for congenital hypothyroidism.

9.
J Allergy Clin Immunol ; 147(2): 417-426, 2021 02.
Article in English | MEDLINE | ID: mdl-33551023

ABSTRACT

Newborn screening for severe combined immunodeficiency, the most profound form of primary immune system defects, has long been recognized as a measure that would decrease morbidity and improve outcomes by helping patients avoid devastating infections and receive prompt immune-restoring therapy. The T-cell receptor excision circle test, developed in 2005, proved to be successful in pilot studies starting in the period 2008 to 2010, and by 2019 all states in the United States had adopted versions of it in their public health programs. Introduction of newborn screening for severe combined immunodeficiency, the first immune disorder accepted for population-based screening, has drastically changed the presentation of this disorder while providing important lessons for public health programs, immunologists, and transplanters.


Subject(s)
Neonatal Screening/methods , Severe Combined Immunodeficiency/diagnosis , Female , Humans , Infant, Newborn , Male
10.
J Chem Phys ; 154(6): 064503, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33588550

ABSTRACT

The properties of water vary dramatically with temperature and density. This can be exploited to control its effectiveness as a solvent. Thus, supercritical water is of keen interest as solvent in many extraction processes. The low solubility of salts in lower density supercritical water has even been suggested as a means of desalination. The high temperatures and pressures required to reach supercritical conditions can present experimental challenges during collection of required physical property and phase equilibria data, especially in salt-containing systems. Molecular simulations have the potential to be a valuable tool for examining the behavior of solvated ions at these high temperatures and pressures. However, the accuracy of classical force fields under these conditions is unclear. We have, therefore, undertaken a parametric study of NaCl in water, comparing several salt and water models at 200 bar-600 bar and 450 K-750 K for a range of salt concentrations. We report a comparison of structural properties including ion aggregation, hydrogen bonding, density, and static dielectric constants. All of the force fields qualitatively reproduce the trends in the liquid phase density. An increase in ion aggregation with decreasing density holds true for all of the force fields. The propensity to aggregate is primarily determined by the salt force field rather than the water force field. This coincides with a decrease in the water static dielectric constant and reduced charge screening. While a decrease in the static dielectric constant with increasing NaCl concentration is consistent across all model combinations, the salt force fields that exhibit more ionic aggregation yield a slightly smaller dielectric decrement.

11.
Prenat Diagn ; 41(9): 1074-1079, 2021 08.
Article in English | MEDLINE | ID: mdl-35280337

ABSTRACT

Objective: To determine the ratio of dichorionic (DC) to monochorionic (MC) twins by maternal age. Methods: We reviewed all twin pregnancies undergoing first trimester screening (FTS) with nuchal translucency from April 2009 to December 2012 with sonographic determination of chorionicity. Cases were linked to newborn screening (NBS) results and zygosity estimated based on rates of fetal sex discordance. The ratio of DC to MC placentation by maternal age was calculated. Results: We identified 11,351 twin pregnancies with FTS and documented chorionicity. Among these, 7,861 (64.2%) had linked data on FTS and NBS to allow estimation of zygosity based on neonatal sex. Of these, 1,464 (18.6%) were MC and 6,406 (81.4%) DC. The MC twin rate remained constant while the DC twin rate increased with maternal age until 40y. At < 20y, 55% of twin pregnancies were monozygotic (MZ), as compared to 29% at ≥ 40y. Of MZ twins, 38% were DC at < 20y, while 53% were DC at ≥ 40y. Conclusions: Our data suggest a relationship of both zygosity and chorionicity with maternal age. DZ twinning increased with maternal age, while among MZ twins, the proportion that were DC also increased with maternal age.


Subject(s)
Chorion , Twins, Dizygotic , Chorion/diagnostic imaging , Female , Gestational Age , Humans , Infant, Newborn , Maternal Age , Pregnancy , Pregnancy, Twin , Twins, Monozygotic
12.
Int J Neonatal Screen ; 6(3): 62, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33123639

ABSTRACT

Since the start of X-linked adrenoleukodystrophy (ALD) newborn screening in California, more than half of the diagnosed cases were found to have an ATP binding cassette subfamily D member 1 (ABCD1) gene variant of uncertain significance (VUS). To determine retrospectively the likelihood that these were true positive cases, we used a web-based post-analytical tool in Collaborative Laboratory Integrated Reports (CLIR). Confirmatory plasma very long-chain fatty-acids (VLCFA) profiles for ALD screen positive infant boys were run through the CLIR ALD tool. We compared the distribution by ABCD1 variant classification (pathogenic, likely pathogenic, VUS, and no variant) with the CLIR tool score interpretation (non-informative, possibly ALD, likely ALD, and very likely ALD) and the current case diagnosis. The study showed that CLIR tool positive interpretations were consistent with 100% of the pathogenic and likely pathogenic variants on the ABCD1 gene if a more conservative guideline was used. The tool interpretations were also consistent with screened cases that were determined to not have disease (our no-disorder group). The CLIR tool identified 19 diagnosed ALD cases with VUS to be potential false positives, representing a 40% reduction among all diagnosed ALD cases with VUS. The reduction could be extended to 65% if a more aggressive threshold was used. Identifying such preventable false positives could alleviate the follow-up burden for patients, their families, and California Special Care Centers.

13.
Nat Med ; 26(9): 1392-1397, 2020 09.
Article in English | MEDLINE | ID: mdl-32778825

ABSTRACT

Public health newborn screening (NBS) programs provide population-scale ascertainment of rare, treatable conditions that require urgent intervention. Tandem mass spectrometry (MS/MS) is currently used to screen newborns for a panel of rare inborn errors of metabolism (IEMs)1-4. The NBSeq project evaluated whole-exome sequencing (WES) as an innovative methodology for NBS. We obtained archived residual dried blood spots and data for nearly all IEM cases from the 4.5 million infants born in California between mid-2005 and 2013 and from some infants who screened positive by MS/MS, but were unaffected upon follow-up testing. WES had an overall sensitivity of 88% and specificity of 98.4%, compared to 99.0% and 99.8%, respectively for MS/MS, although effectiveness varied among individual IEMs. Thus, WES alone was insufficiently sensitive or specific to be a primary screen for most NBS IEMs. However, as a secondary test for infants with abnormal MS/MS screens, WES could reduce false-positive results, facilitate timely case resolution and in some instances even suggest more appropriate or specific diagnosis than that initially obtained. This study represents the largest, to date, sequencing effort of an entire population of IEM-affected cases, allowing unbiased assessment of current capabilities of WES as a tool for population screening.


Subject(s)
Exome Sequencing/methods , Exome/genetics , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Neonatal Screening/methods , Genetic Testing , Humans , Infant, Newborn , Metabolism, Inborn Errors/epidemiology , Tandem Mass Spectrometry
14.
Int J Neonatal Screen ; 6(2)2020 Jun.
Article in English | MEDLINE | ID: mdl-32802992

ABSTRACT

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is a rare autosomal recessive disorder of ß-oxidation caused by pathogenic variants in the ACADS gene. Analyte testing for SCADD in blood and urine, including newborn screening (NBS) using tandem mass spectrometry (MS/MS) on dried blood spots (DBSs), is complicated by the presence of two relatively common ACADS variants (c.625G>A and c.511C>T). Individuals homozygous for these variants or compound heterozygous do not have clinical disease but do have reduced short-chain acyl-CoA dehydrogenase (SCAD) activity, resulting in elevated blood and urine metabolites. As part of a larger study of the potential role of exome sequencing in NBS in California, we reviewed ACADS sequence and MS/MS data from DBSs from a cohort of 74 patients identified to have SCADD. Of this cohort, approximately 60% had one or more of the common variants and did not have the two rare variants, and thus would need no further testing. Retrospective analysis of ethylmalonic acid, glutaric acid, 2-hydroxyglutaric acid, 3-hydroxyglutaric acid, and methylsuccinic acid demonstrated that second-tier testing applied before the release of the newborn screening result could reduce referrals by over 50% and improve the positive predictive value for SCADD to above 75%.

15.
Int J Neonatal Screen ; 6(2)2020 Jun.
Article in English | MEDLINE | ID: mdl-32802993

ABSTRACT

Newborn screening for one or more lysosomal disorders has been implemented in several US states, Japan and Taiwan by multiplexed enzyme assays using either tandem mass spectrometry or digital microfluidics. Another multiplex assay making use of immunocapture technology has also been proposed. To investigate the potential variability in performance of these analytical approaches, we implemented three high-throughput screening assays for the simultaneous screening for four lysosomal disorders: Fabry disease, Gaucher disease, mucopolysaccharidosis type I, and Pompe disease. These assays were tested in a prospective comparative effectiveness study using nearly 100,000 residual newborn dried blood spot specimens. In addition, 2nd tier enzyme assays and confirmatory molecular genetic testing were employed. Post-analytical interpretive tools were created using the software Collaborative Laboratory Integrated Reports (CLIR) to determine its ability to improve the performance of each assay vs. the traditional result interpretation based on analyte-specific reference ranges and cutoffs. This study showed that all three platforms have high sensitivity, and the application of CLIR tools markedly improves the performance of each platform while reducing the need for 2nd tier testing by 66% to 95%. Moreover, the addition of disease-specific biochemical 2nd tier tests ensures the lowest false positive rates and the highest positive predictive values for any platform.

16.
Phys Chem Chem Phys ; 22(28): 16051-16062, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32633286

ABSTRACT

Molecular dynamics (MD) simulations to understand the thermodynamic, dynamic, and structural changes in supercritical water across the Frenkel line and the melting line have been performed. The two-phase thermodynamic model [J. Phys. Chem. B, 2010, 114(24), 8191-8198] and the velocity autocorrelation functions are used to locate the Frenkel line and to calculate the thermodynamic and dynamic properties. The Frenkel lines obtained from the two-phase thermodynamic model and the velocity autocorrelation criterion do not agree with each other. Structural characteristics and the translational diffusion dynamics of water suggest that this inconsistency could arise from the two oscillatory modes in water, which are associated with the bending of hydrogen bonds and intermolecular collisions inside the first coordination shell. The overall results lead us to conclude that the universality of the Frenkel line as a dynamic crossover line from rigid to nonrigid fluids is preserved in water.

17.
Prenat Diagn ; 40(2): 185-190, 2020 01.
Article in English | MEDLINE | ID: mdl-31652356

ABSTRACT

OBJECTIVE: To evaluate the utility of nuchal translucency (NT) screening in the detection of rare chromosomal aneuploidies in the setting of cell-free DNA (cfDNA). METHODS: A retrospective cohort study of pregnancies screened through the California Prenatal Screening Program between March 2009 and December 2012. Karyotype analysis was the primary method of chromosomal evaluation during the study period and abnormal chromosomal karyotype results were classified by whether the abnormality would be detectable by cfDNA (nonmosaic trisomy 13, 18, 21 or sex-chromosomal aneuploidy [SCA]). For those rare aneuploidies detectable by karyotype but not cfDNA, the number of cases that had an increased NT and the detection rate and positive predictive value (PPV) of increased NT for rare aneuploidies were determined. RESULTS: A total of 452 901 pregnant women had screening. There were 2572 chromosomally abnormal fetuses, of which 1922 (74.7%) had a common aneuploidy detectable by cfDNA, leaving 450 979 without T13, 18, 21. Of these, 4181 (0.93%) had an NT ≥3.0 mm. There were 649 rare aneuploidies not detectable by cfDNA. Of these, 108 (16.6%) had an NT ≥3.0 mm. The PPV of an NT ≥3.0 mm for rare aneuploidies was 2.6%. In all, 4176 fetuses need to be screened with NT to detect a rare aneuploidy. CONCLUSIONS: The addition of NT to cfDNA screening would detect 16.6% of rare aneuploidies. Increased NT has a low PPV for rare aneuploidies and a large number of women would need NT screening to detect each affected fetus.


Subject(s)
Aneuploidy , Cell-Free Nucleic Acids/blood , Noninvasive Prenatal Testing , Nuchal Translucency Measurement , Abnormal Karyotype , Adult , Chromosome Aberrations , Down Syndrome/diagnosis , Female , Humans , Karyotyping , Predictive Value of Tests , Pregnancy , Rare Diseases/diagnosis , Retrospective Studies , Sensitivity and Specificity , Sex Chromosome Aberrations , Trisomy 13 Syndrome/diagnosis , Trisomy 18 Syndrome/diagnosis , Turner Syndrome/diagnosis , Ultrasonography, Prenatal
18.
J Chem Phys ; 151(22): 224504, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31837692

ABSTRACT

We have performed classical molecular dynamics (MD) simulations of aqueous sodium chloride (NaCl) solutions from 298 to 674 K at 200 bars to understand the influence of ion pairing and ion self-diffusion on electrical conductivity in high-temperature/high-pressure salt solutions. Conductivity data obtained from the MD simulation highlight an apparent anomaly, namely, a conductivity maximum as temperature increases along an isobar, which has been also observed in experimental studies. By examining both velocity autocorrelation and cross-correlation terms of the Green-Kubo integral, we quantitatively demonstrate that the conductivity anomaly arises mainly from a competition between the single-ion self-diffusion and the contact ion pair formation. The velocity autocorrelation function in conjunction with structural analysis suggests that diffusive motion of ions is suppressed at high temperatures due to the persistence of an inner hydration shell. The contribution of velocity cross-correlation functions between oppositely charged ions becomes significant at the onset of the conductivity decrease. Structural analysis based on Voronoi tessellation and pair correlation functions indicates that the fraction of contact ion pairs increases as temperature increases. Spatial decomposition of the electrical conductivity also indicates that the formation of contact ion pairs significantly decreases the electrical conductivity compared to Nernst-Einstein conductivity, but the contribution of distant opposite charges cannot be ignored except at the highest temperature due to unscreened long-range interactions.

20.
PLoS One ; 14(6): e0218489, 2019.
Article in English | MEDLINE | ID: mdl-31220134

ABSTRACT

Blooms of the toxic microalga Karenia brevis occur seasonally in Florida, Texas and other portions of the Gulf of Mexico. Brevetoxins produced during Karenia blooms can cause neurotoxic shellfish poisoning in humans, massive fish kills, and the death of marine mammals and birds. Brevetoxin-containing aerosols are an additional problem, having a severe impact on beachgoers, triggering coughing, eye and throat irritation in healthy individuals, and more serious respiratory distress in those with asthma or other breathing disorders. The blooms and associated aerosol impacts are patchy in nature, often affecting one beach but having no impact on an adjacent beach. To provide timely information to visitors about which beaches are low-risk, we developed HABscope; a low cost (~$400) microscope system that can be used in the field by citizen scientists with cell phones to enumerate K. brevis cell concentrations in the water along each beach. The HABscope system operates by capturing short videos of collected water samples and uploading them to a central server for rapid enumeration of K. brevis cells using calibrated recognition software. The HABscope has a detection threshold of about 100,000 cells, which is the point when respiratory risk becomes evident. Higher concentrations are reliably estimated up to 10 million cells L-1. When deployed by volunteer citizen scientists, the HABscope consistently distinguished low, medium, and high concentrations of cells in the water. The volunteers were able to collect data on most days during a severe bloom. This indicates that the HABscope can provide an effective capability to significantly increase the sampling coverage during Karenia brevis blooms.


Subject(s)
Asthma/prevention & control , Harmful Algal Bloom , Marine Toxins/adverse effects , Oxocins/adverse effects , Shellfish Poisoning/epidemiology , Aerosols/adverse effects , Asthma/epidemiology , Dinoflagellida , Florida/epidemiology , Gulf of Mexico/epidemiology , Humans , Microalgae/growth & development , Microalgae/pathogenicity , Shellfish Poisoning/prevention & control , Texas/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...