Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895276

ABSTRACT

Taxonomic profiling is a ubiquitous task in the analysis of clinical and environmental microbiomes. The advent of long-read sequencing of microbiomes necessitates the development of new taxonomic profilers tailored to long-read shotgun metagenomic datasets. Here, we introduce Lemur and Magnet, a pair of tools optimized for lightweight and accurate taxonomic profiling from long-read shotgun metagenomic datasets. Lemur is a marker-gene based method that leverages an EM algorithm to reduce false positive calls while preserving true positives; Magnet makes detailed presence/absence calls for bacterial genomes based on whole-genome read mapping. The tools work in sequence: Lemur estimates abundances conservatively, and Magnet operates on the genomes of identified organisms to filter out likely false positive taxa. The result is an increase in precision of as much as 70%, which far exceeds competing methods. By operating only on marker genes, Lemur is a comparatively lightweight software. We demonstrate that it can run in minutes to hours on a laptop with 32 GB of RAM, even for large inputs - a crucial feature given the portability of long-read sequencing machines. Furthermore, the marker gene database used by Lemur is only 4 GB and contains information from over 300,000 RefSeq genomes. The reference is available at https://zenodo.org/records/10802546, and the software is open-source and available at https://github.com/treangenlab/lemur.

2.
Bioinformatics ; 40(Supplement_1): i58-i67, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940156

ABSTRACT

MOTIVATION: The study of bacterial genome dynamics is vital for understanding the mechanisms underlying microbial adaptation, growth, and their impact on host phenotype. Structural variants (SVs), genomic alterations of 50 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to the absence of clear reference genomes and the presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing all metagenomic samples in a series (time or other metric) into a single co-assembly graph. The log fold change in graph coverage between successive samples is then calculated to call SVs that are thriving or declining. RESULTS: We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, particularly as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between successive time and temperature samples, suggesting host advantage. Our approach leverages previous work in assembly graph structural and coverage patterns to provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial gene flux. AVAILABILITY AND IMPLEMENTATION: rhea is open source and available at: https://github.com/treangenlab/rhea.


Subject(s)
Genome, Bacterial , Metagenome , Microbiota , Microbiota/genetics , Metagenomics/methods , Gene Transfer, Horizontal , Bacteria/genetics , Algorithms
3.
Curr Protoc ; 4(3): e978, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511467

ABSTRACT

16S rRNA targeted amplicon sequencing is an established standard for elucidating microbial community composition. While high-throughput short-read sequencing can elicit only a portion of the 16S rRNA gene due to their limited read length, third generation sequencing can read the 16S rRNA gene in its entirety and thus provide more precise taxonomic classification. Here, we present a protocol for generating full-length 16S rRNA sequences with Oxford Nanopore Technologies (ONT) and a microbial community profile with Emu. We select Emu for analyzing ONT sequences as it leverages information from the entire community to overcome errors due to incomplete reference databases and hardware limitations to ultimately obtain species-level resolution. This pipeline provides a low-cost solution for characterizing microbiome composition by exploiting real-time, long-read ONT sequencing and tailored software for accurate characterization of microbial communities. © 2024 Wiley Periodicals LLC. Basic Protocol: Microbial community profiling with Emu Support Protocol 1: Full-length 16S rRNA microbial sequences with Oxford Nanopore Technologies sequencing platform Support Protocol 2: Building a custom reference database for Emu.


Subject(s)
Dromaiidae , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Dromaiidae/genetics , Bacteria/genetics , Sequence Analysis, DNA/methods , Microbiota/genetics
4.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352454

ABSTRACT

Bacterial genome dynamics are vital for understanding the mechanisms underlying microbial adaptation, growth, and their broader impact on host phenotype. Structural variants (SVs), genomic alterations of 10 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to absence of clear reference genomes and presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing a single metagenome coassembly graph constructed from all samples in a series. The log fold change in graph coverage between subsequent samples is then calculated to call SVs that are thriving or declining throughout the series. We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, which is particularly noticeable as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between subsequent time and temperature samples, suggesting host advantage. Our innovative approach leverages raw read patterns rather than references or MAGs to include all sequencing reads in analysis, and thus provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial genome dynamics.

5.
bioRxiv ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-36993481

ABSTRACT

Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants. Here, we introduce CLASSIC, a generalizable genetic screening platform that combines long- and short-read next-generation sequencing (NGS) modalities to quantitatively assess pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can measure expression profiles of >10 5 drug-inducible gene circuit designs (ranging from 6-9 kb) in a single experiment in human cells. Using statistical inference and machine learning (ML) approaches, we demonstrate that data obtained with CLASSIC enables predictive modeling of an entire circuit design landscape, offering critical insight into underlying design principles. Our work shows that by expanding the throughput and understanding gained with each design-build-test-learn (DBTL) cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and establishes an experimental basis for data-driven design of complex genetic systems.

6.
Nat Methods ; 19(7): 845-853, 2022 07.
Article in English | MEDLINE | ID: mdl-35773532

ABSTRACT

16S ribosomal RNA-based analysis is the established standard for elucidating the composition of microbial communities. While short-read 16S rRNA analyses are largely confined to genus-level resolution at best, given that only a portion of the gene is sequenced, full-length 16S rRNA gene amplicon sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, an approach that uses an expectation-maximization algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from simulated datasets and mock communities show that Emu is capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of Emu by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow with those returned by full-length 16S rRNA gene sequences processed with Emu.


Subject(s)
Dromaiidae , Microbiota , Nanopore Sequencing , Animals , Bacteria/genetics , Dromaiidae/genetics , High-Throughput Nucleotide Sequencing/methods , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
7.
Emerg Top Life Sci ; 5(6): 815-827, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34779841

ABSTRACT

Associations between the human gut microbiome and expression of host illness have been noted in a variety of conditions ranging from gastrointestinal dysfunctions to neurological deficits. Machine learning (ML) methods have generated promising results for disease prediction from gut metagenomic information for diseases including liver cirrhosis and irritable bowel disease, but have lacked efficacy when predicting other illnesses. Here, we review current ML methods designed for disease classification from microbiome data. We highlight the computational challenges these methods have effectively overcome and discuss the biological components that have been overlooked to offer perspectives on future work in this area.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Machine Learning , Metagenome , Metagenomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...