Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Future Microbiol ; 14: 397-410, 2019 03.
Article in English | MEDLINE | ID: mdl-30854893

ABSTRACT

AIM: Sporothrix schenckii is the causative agent of sporotrichosis. A 70-kDa glycoprotein, Gp70, is a candidate for the development of prophylactic alternatives to control the disease, and its gene (GP70) is predicted to encode for a protein of 43 kDa, contrasting with the molecular weight of the native protein. MATERIALS & METHODS: The GP70 was expressed in bacteria, the recombinant protein purified, used in immunoassays and injected to Galleria mellonella. RESULTS & CONCLUSION: The recombinant protein was detected by anti-Gp70 antibodies, confirming that the Gp70 backbone is a 43-kDa peptide. This protein showed enzyme activity of cyclase and was recognized by sera of patients with sporotrichosis. Although it was not useful for serodiagnosis of sporotrichosis, it conferred protection to animals against experimental sporotrichosis.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/immunology , Glycoproteins/immunology , Sporothrix/genetics , Sporotrichosis/microbiology , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/chemistry , Gene Expression , Glycoproteins/chemistry , Glycoproteins/genetics , Humans , Molecular Weight , Moths , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sporothrix/immunology , Sporotrichosis/immunology
2.
J Proteomics ; 151: 83-96, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27321585

ABSTRACT

Aspergillus fumigatus, the main etiologic agent causing invasive aspergillosis, can induce an inflammatory response and a prothrombotic phenotype upon contact with human umbilical vein endothelial cells (HUVECs). However, the fungal molecules involved in this endothelial response remain unknown. A. fumigatus hyphae produce an extracellular matrix composed of galactomannan, galactosaminogalactan and α-(1,3)-glucan. In this study, we investigated the consequences of UGM1 gene deletion in A. fumigatus, which produces a mutant with increased galactosaminogalactan production. The ∆ugm1 mutant exhibited an HUVEC-hyperadhesive phenotype and induced increased endothelial TNF-α secretion and tissue factor mRNA overexpression in this "semi-professional" immune host cell. Using a shotgun proteomics approach, we show that the A. fumigatus ∆ugm1 strain can modulate the levels of proteins in important endothelial pathways related to the inflammatory response mediated by TNF-α and to stress response pathways. Furthermore, a purified galactosaminogalactan fraction was also able to induce TNF-α secretion and the coincident HUVEC pathways regulated by the ∆ugm1 mutant, which overexpresses this component, as demonstrated by fluorescence microscopy. This work contributes new data regarding endothelial mechanisms in response to A. fumigatus infection. SIGNIFICANCE: Invasive aspergillosis is the main opportunistic fungal infection described in neutropenic hematologic patients. One important clinical aspect of this invasive fungal infection is vascular thrombosis, which could be related, at least in part, to the activation of endothelial cells, as shown in previous reports from our group. It is known that direct contact between the A. fumigatus hyphal cell wall and the HUVEC cell surface is necessary to induce an endothelial prothrombotic phenotype and secretion of pro-inflammatory cytokines, though the cell surface components of this angioinvasive fungus that trigger this endothelial response are unknown. The present work employs a discovery-driven proteomics approach to reveal the role of one important cell wall polysaccharide of A. fumigatus, galactosaminogalactan, in the HUVEC interaction and the consequent mechanisms of endothelial activation. This is the first report of the overall panel of proteins related to the HUVEC response to a specific and purified cell wall component of the angioinvasive fungus A. fumigatus.


Subject(s)
Aspergillus fumigatus/chemistry , Human Umbilical Vein Endothelial Cells/chemistry , Human Umbilical Vein Endothelial Cells/microbiology , Hyphae/chemistry , Inflammation , Stress, Physiological , Aspergillus fumigatus/genetics , Endothelial Cells/metabolism , Fungal Proteins/physiology , Gene Deletion , Host-Pathogen Interactions , Humans , Polysaccharides/biosynthesis , Thrombosis/etiology , Thrombosis/microbiology , Tumor Necrosis Factor-alpha/metabolism
3.
Data Brief ; 9: 24-31, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27622208

ABSTRACT

Invasive aspergillosis is the primary opportunistic invasive fungal infection described in neutropenic hematologic patients, caused by the angioinvasive pathogen Aspergillus fumigatus. The molecular mechanisms associated with A. fumigatus infection in the vascular endothelium are poorly understood. In this context, we used a high-throughput proteomic approach to unveil the proteins modulated in HUVECs after interaction with a wild type strain and the UGM1 mutant (Δugm1) of A. fumigatus. The proteomic analysis was also performed in HUVECs challenged with a galactosaminogalactan (GAG) purified from A. fumigatus cell wall. The dataset presented here correspond to all proteins identified that fit a 2-fold change criteria (log 2 ratio ≥ 1 or ≤ -1), disregarding the statistical validation cut off, in order to supplement the research article entitled "Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates the HUVEC proteins associated with inflammatory and stress responses" (G.W.P. Neves, N.A. Curty, P.H. Kubitschek-Barreira, T. Fontaine, G.H.M.F. Souza, M. Lyra Cunha, G.H. Goldman, A. Beauvais, J.P. Latgé, L.M. Lopes-Bezerra, 2016) [1]. The mass spectrometry proteomic data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002823.

4.
J Proteomics ; 78: 522-34, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23128298

ABSTRACT

Aspergillus fumigatus is the main etiological agent of invasive aspergillosis, an important opportunistic infection for neutropenic patients. The main risk groups are patients with acute leukemia and bone marrow transplantation recipients. The lack of an early diagnostic test together with the limited spectrum of antifungal drugs remains a setback to the successful treatment of this disease. During invasive infection the inhaled fungal conidia enter the morphogenic cycle leading to angioinvasive hyphae. This work aimed to study differentially expressed proteins of A. fumigatus during morphogenesis. To achieve this goal, a 2D-DIGE approach was applied to study surface proteins extractable by reducing agents of two A. fumigatus morphotypes: germlings and hyphae. Sixty-three differentially expressed proteins were identified by MALDI-ToF/MS. We observed that proteins associated with biosynthetic pathways and proteins with multiple functions (miscellaneous) were over-expressed in the early stages of germination, while in hyphae, the most abundant proteins detected were related to metabolic processes or have unknown functions. Among the most interesting proteins regulated during morphogenesis, two putative drug targets were identified, the translational factor, eEF3 and the CipC-like protein. Neither of these proteins are present in mammalian cells.


Subject(s)
Aspergillus fumigatus/physiology , Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal/physiology , Hyphae/metabolism , Proteomics , Spores, Fungal/metabolism , Acute Disease , Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillosis/etiology , Aspergillosis/metabolism , Bone Marrow Transplantation , Drug Delivery Systems , Humans , Leukemia/metabolism , Leukemia/therapy , Neutropenia/complications , Neutropenia/drug therapy , Neutropenia/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...