Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671551

ABSTRACT

With breast cancer (BC) therapy improvements, the appearance of brain metastases has been increasing, representing a life-threatening condition. Brain metastasis formation involves BC cell (BCC) extravasation across the blood-brain barrier (BBB) and brain colonization by unclear mechanisms. We aimed to disclose the actors involved in BC brain metastasis formation, focusing on BCCs' phenotype, growth factor expression, and signaling pathway activation, correlating with BBB alterations and intercellular communication. Hippocampi of female mice inoculated with 4T1 BCCs were examined over time by hematoxylin-eosin, immunohistochemistry and immunofluorescence. Well-established metastases were observed at seven days, increasing thereafter. BCCs entering brain parenchyma presented mesenchymal, migratory, and proliferative features; however, with time, they increasingly expressed epithelial markers, reflecting a mesenchymal-epithelial transition. BCCs also expressed platelet-derived growth factor-B, ß4 integrin, and focal adhesion kinase, suggesting autocrine and/or paracrine regulation with adhesion signaling activation, while balance between Rac1 and RhoA was associated with the motility status. Intercellular communication via gap junctions was clear among BCCs, and between BCCs and endothelial cells. Thrombin accumulation, junctional protein impairment, and vesicular proteins increase reflect BBB alterations related with extravasation. Expression of plasmalemma vesicle-associated protein was increased in BCCs, along with augmented vascularization, whereas pericyte contraction indicated mural cells' activation. Our results provide further understanding of BC brain metastasis formation, disclosing potential therapeutic targets.

2.
Biochim Biophys Acta Rev Cancer ; 1868(1): 132-147, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28341420

ABSTRACT

Central nervous system metastases have been reported in 15-25% of breast cancer patients, and the incidence is increasing. Moreover, the survival of these patients is generally poor, with reports of a 1-year survival rate of 20%. Therefore, a better knowledge about the determinants of brain metastasization is essential for the improvement of the clinical outcomes. Here, we summarize the current data about the metastatic cascade, ranging from the output of cancer cells from the primary tumour to their colonization in the brain, which involves the epithelial-mesenchymal transition, invasion of mammary tissue, intravasation into circulation, and homing into and extravasation towards the brain. The phenotypic change in malignant cells, and the importance of the microenvironment in the formation of brain metastases are also inspected. Finally, the importance of genetic and epigenetic changes, and the recently disclosed effects of microRNAs in brain metastasization of breast cancer are highlighted.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Breast Neoplasms/pathology , Neoplasm Metastasis/pathology , Epithelial-Mesenchymal Transition/physiology , Female , Humans , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...