Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; : e4362, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899533

ABSTRACT

Predicting the effects of warming temperatures on the abundance and distribution of organisms under future climate scenarios often requires extrapolating species-environment correlations to climatic conditions not currently experienced by a species, which can result in unrealistic predictions. For poikilotherms, incorporating species' thermal physiology to inform extrapolations under novel thermal conditions can result in more realistic predictions. Furthermore, models that incorporate species and spatial dependencies may improve predictions by capturing correlations present in ecological data that are not accounted for by predictor variables. Here, we present a joint species, spatially dependent physiologically guided abundance (jsPGA) model for predicting multispecies responses to climate warming. The jsPGA model uses a basis function approach to capture both species and spatial dependencies. We apply the jsPGA model to predict the response of eight fish species to projected climate warming in thousands of lakes in Minnesota, USA. By the end of the century, the cold-adapted species was predicted to have high probabilities of extirpation across its current range-with 10% of lakes currently inhabited by this species having an extirpation probability >0.90. The remaining species had varying levels of predicted changes in abundance, reflecting differences in their thermal physiology. Though the model did not identify many strong species dependencies, the variation in estimated spatial dependence across species suggested that accounting for both dependencies was important for predicting the abundance of these fishes. The jsPGA model provides a new tool for predicting changes in the abundance, distribution, and extirpation probability of poikilotherms under novel thermal conditions.

2.
Proc Natl Acad Sci U S A ; 120(15): e2214199120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37011195

ABSTRACT

Poikilothermic animals comprise most species on Earth and are especially sensitive to changes in environmental temperatures. Species conservation in a changing climate relies upon predictions of species responses to future conditions, yet predicting species responses to climate change when temperatures exceed the bounds of observed data is fraught with challenges. We present a physiologically guided abundance (PGA) model that combines observations of species abundance and environmental conditions with laboratory-derived data on the physiological response of poikilotherms to temperature to predict species geographical distributions and abundance in response to climate change. The model incorporates uncertainty in laboratory-derived thermal response curves and provides estimates of thermal habitat suitability and extinction probability based on site-specific conditions. We show that temperature-driven changes in distributions, local extinction, and abundance of cold, cool, and warm-adapted species vary substantially when physiological information is incorporated. Notably, cold-adapted species were predicted by the PGA model to be extirpated in 61% of locations that they currently inhabit, while extirpation was never predicted by a correlative niche model. Failure to account for species-specific physiological constraints could lead to unrealistic predictions under a warming climate, including underestimates of local extirpation for cold-adapted species near the edges of their climate niche space and overoptimistic predictions of warm-adapted species.


Subject(s)
Climate Change , Fishes , Animals , Fishes/physiology , Temperature , Ecosystem , Cold Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...