Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cognition ; 222: 104944, 2022 05.
Article in English | MEDLINE | ID: mdl-35093764

ABSTRACT

Converging lines of evidence suggest that the numerical abilities in Humans are rooted in the approximate number system (ANS): an innate, non-verbal mechanism that enables to estimate the numerosity of a set of items with little effort. Nevertheless, the high correlation between visual features and numerosity in the natural environment always constituted a relevant methodological problem that gathered growing concern throughout the years. This issue led some researchers to cast doubts on the existence of a system able to process numerical information independently from the influence of visual features. In the present study, we sought to shed light on the interplay between numerosity and visual features. To this aim, we implemented a non-symbolic estimation task which included a calibration phase. After performing a pre-calibration block, participants were presented with the calibration image for 20 s, and they were divided in three groups, according to the calibration stimulus they attended to: the three calibration stimuli contained the same number of items (30), but were characterized by a different amount of visual features. Results showed that performance was affected by numerosity and visual features in both phases of the experiment. However, calibration increased the weight of numerosity on performance while decreasing the weight of visual features. These results are hard to be reconciled with theories that attempt to explain human performance in non-symbolic number processing without taking into account both numerical and non-numerical aspects of the stimuli.


Subject(s)
Environment , Humans
2.
Behav Res Methods ; 52(4): 1528-1537, 2020 08.
Article in English | MEDLINE | ID: mdl-31965476

ABSTRACT

When evaluating the properties of a set of elements in a natural environment, an increase in numerosity unavoidably corresponds to an increase in the physical properties of the set: Five apples differ from ten apples not only in numerosity, but also in their visual features, such as volume, density, and surface. Since nonsymbolic number processing is typically investigated through the presentation of arrays of elements, it is mandatory to keep track of the visual features characterizing the stimuli. A plethora of solutions have been proposed to address this complex methodological issue; yet, there is no agreed-upon standard for how to measure and control for visual features. Here we present the "customized ultraprecise standardization-oriented multipurpose" (CUSTOM) algorithm for generating nonsymbolic number stimuli. It is characterized by several core features: The absence of fixed parameters or rules-apart from geometrical constraints-lets the user freely manipulate the visual features of the stimuli; control over the visual features of the stimuli is extremely accurate; no modification is required in order to perform different types of manipulation; and users can re-create any set of stimuli described so far in previous experiments on numerical cognition, for a wide variety of tasks, including comparison, estimation, habituation, and match-to-sample. The CUSTOM algorithm could represent an asset in the field of numerical cognition, as a versatile instrument for effectively generating high-precision visual stimuli within an unbiased theoretical framework.


Subject(s)
Algorithms , Cognition , Mathematics , Reference Standards
3.
Atten Percept Psychophys ; 82(3): 1535, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31898074

ABSTRACT

In the Results section (pp.1785, left column), please replace the sentences "In particular, RTs for the large-unstructured condition were significantly faster than RTs on the small-unstructured condition.

4.
Atten Percept Psychophys ; 81(6): 1781-1788, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31264081

ABSTRACT

The Spatial-Numerical Association of Response Codes (SNARC) effect has been observed with different stimuli, beside Arabic numerals, such as written/spoken number words, sequences of acoustic stimuli, and groups of elements. Here we investigated how the enumeration of sets of elements can be affected by the spatial configuration of the displayed stimuli with regard to the emergence of the SNARC effect. To this aim, we asked participants to perform a magnitude comparison task with structured (i.e., dice-like) and unstructured (i.e., random) patterns of rectangles. With this manipulation, we sought to explore the presence of the SNARC effect in relation to the structure of the displayed visual stimuli. The results showed that the spatial arrangement of rectangles does not impact visual enumeration processes leading to the SNARC effect. An unexpected reversal of the size effect for unstructured stimuli was also observed. We speculate that the presence of a similar SNARC effect, both with structured and unstructured stimuli, indicates the existence of a common access to the mental number line.


Subject(s)
Mental Processes/physiology , Photic Stimulation/methods , Space Perception/physiology , Adult , Female , Humans , Male , Mathematics , Pattern Recognition, Visual/physiology , Reaction Time/physiology , Semantics , Task Performance and Analysis , Young Adult
5.
Psychophysiology ; 55(11): e13219, 2018 11.
Article in English | MEDLINE | ID: mdl-30095174

ABSTRACT

Humans share with a variety of animal species the spontaneous ability to detect the numerical correspondence between limited quantities of visual objects and discrete auditory events. Here, we explored how such mental representation is generated in the visual modality by monitoring a parieto-occipital ERP component, N2pc, whose amplitude covaries with the number of visual targets in explicit enumeration. Participants listened to an auditory sequence of one to three tones followed by a visual search display containing one to three targets. In Experiment 1, participants were asked to respond based on the numerical correspondence between tones and visual targets. In Experiment 2, participants were asked to ignore the tones and detect a target presence in the search display. The results of Experiment 1 showed an N2pc amplitude increase determined by the number of visual targets followed by a centroparietal ERP component modulated by the numerical correspondence between tones and visual targets. The results of Experiment 2 did not show an N2pc amplitude increase as a function of the number of visual targets. However, the numerical correspondence between tones and visual targets influenced N2pc amplitude. By comparing a subset of amplitude/latency parameters between Experiment 1 and 2, the present results suggest N2pc reflects two modes for representing the number of visual targets. One mode, susceptible to subjective control, relies on visual target segregation for exact target individuation, whereas a different mode, likely enabling spontaneous cross-modal matching, relies on the extraction of rough information about number of targets from visual input.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Evoked Potentials/physiology , Mathematical Concepts , Occipital Lobe/physiology , Parietal Lobe/physiology , Visual Perception/physiology , Adult , Evoked Potentials, Visual/physiology , Female , Humans , Male , Young Adult
6.
Phys Rev Lett ; 121(24): 241101, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30608723

ABSTRACT

The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi -large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products. The analysis is designed to be robust against contamination from resolved sources and noise systematics. The sensitivity to subthreshold sources is greatly enhanced with respect to previous measurements. We find evidence (with ∼3.7σ significance) that the scenario in which two classes of sources contribute to the UGRB signal is favored over a single class. A double power law with exponential cutoff can explain the anisotropy energy spectrum well, with photon indices of the two populations being 2.55±0.23 and 1.86±0.15.

7.
Phys Rev Lett ; 118(9): 091103, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306280

ABSTRACT

The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.

8.
Phys Rev Lett ; 116(15): 151105, 2016 04 15.
Article in English | MEDLINE | ID: mdl-27127954

ABSTRACT

The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN/dS, of extragalactic γ-ray sources at E>50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (∼8×10^{-12} ph cm^{-2} s^{-1}). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, S_{b}, in the range [8×10^{-12},1.5×10^{-11}] ph cm^{-2} s^{-1} and power-law indices below and above the break of α_{2}∈[1.60,1.75] and α_{1}=2.49±0.12, respectively. Integration of dN/dS shows that point sources account for at least 86_{-14}^{+16}% of the total extragalactic γ-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.

9.
Phys Rev D ; 93(8): 082001, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-32743154

ABSTRACT

We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

10.
Phys Rev Lett ; 115(23): 231301, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26684107

ABSTRACT

The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.

11.
Phys Rev Lett ; 112(15): 151103, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24785023

ABSTRACT

Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200 GeV, respectively.

12.
Science ; 343(6166): 42-7, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24263133

ABSTRACT

The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

13.
Science ; 339(6121): 807-11, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23413352

ABSTRACT

Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

14.
Science ; 338(6112): 1314-7, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23112297

ABSTRACT

Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

15.
Science ; 338(6111): 1190-2, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23118013

ABSTRACT

The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ∼ 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

16.
Phys Rev Lett ; 108(1): 011103, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22304252

ABSTRACT

We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

17.
Science ; 335(6065): 189-93, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22246769

ABSTRACT

Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

18.
Science ; 331(6018): 739-42, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21212321

ABSTRACT

A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

19.
Phys Rev Lett ; 107(24): 241302, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22242987

ABSTRACT

Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26) cm3 s(-1) at 5 GeV to about 5×10(-23) cm3 s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26) cm3 s(-1) for a purely s-wave cross section), without assuming additional boost factors.

20.
Article in English | MEDLINE | ID: mdl-22254428

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical neuroimaging method used to investigate functional activity of the cerebral cortex evoked by cognitive, visual, auditory and motor tasks, detecting regional changes of oxy- and deoxy-hemoglobin concentration. Accurate estimation of the stimulus-evoked hemodynamic response (HR) from fNIRS signals in order to quantitatively investigate cognitive functions requires to cope with several noise components. Some of them appear as random disturbances (typically tackled through averaging techniques), while others are due to physiological sources, such as heart beat, respiration, vasomotor waves, and are particularly challenging to be dealt with because they lie in the same frequency band of HR. In this work we present a new two-steps methodology for the HR estimation from fNIRS data. The first step is a pre-processing stage where physiological trends in fNIRS data are reduced by exploiting a mathematical model identified from the signal of a reference channel. In the second step, the pre-processed data of the other channels are filtered with a recently presented non-parametric Bayesian approach (Scarpa et al., Optics Express, 2010). The presented method for HR estimation is compared with widely used methods: conventional averaging, band-pass filtering and principal component analysis (PCA). Results on simulated data reveal the ability of the proposed method to improve the accuracy of the estimates of the functional hemodynamic response, as well as the estimate of peak amplitude and latency. Encouraging preliminary results in a representative real data set showing an improvement of contrast to noise ratio are also reported.


Subject(s)
Algorithms , Brain Mapping/methods , Brain/physiology , Cerebrovascular Circulation/physiology , Evoked Potentials/physiology , Hemoglobins/analysis , Spectroscopy, Near-Infrared/methods , Adult , Bayes Theorem , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...