Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396705

ABSTRACT

Various attempts to amplify an AQP11 cDNA from tissues of the spiny dogfish (Squalus acanthias) were made. Two pairs of deoxy-inosine-containing degenerate primers were designed based on conserved amino acid sequences from an AQP11 alignment. These primers yielded some faint bands from gill cDNA that were sequenced. Blast searches with the sequences showed they were not AQP11. An elasmobranch AQP11 nucleotide sequence alignment was produced to identify conserved regions to make further degenerate primers. One primer pair produced a short 148 bp fragment showing particularly strong amplification in gill and intestine. It was sequenced and represented a piece of the AQP11 gene. However, as the fragment may have resulted from contaminating genomic DNA (in total RNA used to make cDNA), 5' and 3' RACE were performed to amplify the two ends of the putative cDNA. Furthermore, 5' and 3' RACE amplifications depend on the presence of a 5' cap nucleotide and a poly A tail, respectively on the putative AQP11 mRNA. Hence, successful amplification was only possible from cDNA and not genomic DNA. Nested RACE amplifications were performed using gill and intestinal RACE cDNA, but none of the DNA fragments sequenced were AQP11. Consequently, the spiny dogfish AQP11 gene may represent a pseudogene.


Subject(s)
Squalus acanthias , Animals , Squalus acanthias/genetics , DNA, Complementary/genetics , Pseudogenes/genetics , Base Sequence , DNA/genetics
2.
Article in English | MEDLINE | ID: mdl-35248695

ABSTRACT

The transport mechanisms for water, ammonia and urea in elasmobranch gill, kidney and gastrointestinal tract remain to be fully elucidated. Aquaporin 8 (AQP8) is a known water, ammonia and urea channel that is expressed in the kidney and respiratory and gastrointestinal tracts of mammals and teleost fish. However, at the initiation of this study in late 2019, there was no copy of an elasmobranch aquaporin 8 gene identified in the genebank even for closely related holocephalon species such as elephant fish (Callorhinchus milii) or for the elasmobranch little skate (Leucoraja erinacea). A transcriptomic study in spiny dogfish (Squalus acanthias) also failed to identify a copy. Hence this study has remedied this and identified the AQP8 cDNA sequence using degenerate PCR. Agarose electrophoresis of degenerate PCR reactions from dogfish tissues showed a strong band from brain cDNA and faint bands of a similar size in gill and liver. 5' and 3' RACE was used to complete the AQP8 cDNA sequence. Primers were then designed for further PCR reactions to determine the distribution of AQP8 mRNA expression in dogfish tissues. This showed that AQP8 is only expressed in dogfish brain and AQP8 therefore clearly can play no role in water, ammonia and urea transport in the gill, kidney or gastrointestinal tract. The role of AQP8 in dogfish brain remains to be determined.


Subject(s)
Aquaporins , Skates, Fish , Squalus acanthias , Ammonia/metabolism , Animals , Aquaporins/genetics , Brain/metabolism , DNA, Complementary/metabolism , Dogfish/genetics , Dogfish/metabolism , Fishes/metabolism , Gills/metabolism , Intestines , Kidney/metabolism , Mammals/metabolism , Skates, Fish/metabolism , Squalus acanthias/genetics , Squalus acanthias/metabolism , Urea/metabolism , Water/metabolism
3.
Article in English | MEDLINE | ID: mdl-34856347

ABSTRACT

Three aquaporin water channel proteins, AQP3, AQP4 and AQP15 were localized to cells within the kidney of the spiny dogfish, Squalus acanthias, using an immunohistochemical approach. Dogfish kidney has two zones, the bundle zone (including five nephron segment bundles) and the sinus zone (with two major loops). In order to discriminate between the two loops, the cilia occurring in the first proximal/intermediate loop were labeled with two antibodies including an anti-acetylated tubulin antibody. The second late distal tubule loop (LDT) was identified, as the nephron in that region has no luminal cilia. Strong staining of the rabbit anti-dogfish AQP3, AQP4 (AQP4/2) or AQP15 polyclonal antibodies localized to LDT tubules. These antibodies were further co-stained with a mouse anti-Na+,K+-ATPase a5 monoclonal antibody, as Na+,K+-ATPase has previously been suggested to localize to the early distal tubule (EDT) and LDT and a mouse anti-NKCC T4 antibody, as NKCC2 was previously suggested to be located in the EDT and the second half of the LDT. In the LDT, strong AQP4/2 and AQP15 antibody staining localized together with the strong Na+,K+-ATPase antibody staining, whereas strong AQP3 antibody staining was largely separate but with an overlapping distribution. Very low levels of AQP4/2 antibody basal membrane staining was also detected in the first proximal /intermediate loop of the sinus zone. There was no mouse anti-NKCC T4 antibody staining apparent in the LDT. In the convoluted part of the bundle zone, the AQP4/2 and Na+,K+-ATPase but not the AQP3 or AQP15 antibodies stained tubule segments, with both AQP4/2 and Na+,K+-ATPase staining the EDT, and with low-level AQP4/2 staining of two other tubules of the bundle, which were most likely to be the proximal 1a (PIa) and intermediate II (IS II) tubules. The AQP4/2 antibody also stained the EDT in the straight bundle zone. The mouse anti-NKCC T4 antibody stained the apical region of EDT tubules in the convoluted bundle zone, suggesting that the antibody was binding to the NKCC2 cotransporter. The AQP15 antibody appeared to bind to the peritubular sheath surrounding bundles in the bundle zone. Due to the AQP4/2 antibody staining in the EDT that immediately proceeds and continues into the LDT, this suggested that the strong AQP4/2, AQP15 and Na+,K+-ATPase antibody staining was located at the beginning of the LDT and therefore the strong AQP3 was located at the end of the LDT. The staining of all three AQP antibodies was blocked by the peptide-antigen used to make each one, suggesting that all the staining is specific to each antibody.


Subject(s)
Aquaporins , Squalus acanthias , Animals , Dogfish , Kidney , Mice , Nephrons , Rabbits
4.
Article in English | MEDLINE | ID: mdl-34856346

ABSTRACT

Complementary DNAs (cDNAs) for two aquaporin water channel genes (AQP3 and AQP15) were amplified cloned and sequenced to initiate this study. Northern blot analysis was carried out to confirm the mRNA sizes of these AQP genes with AQP3 mRNA bands exhibiting sizes of 1.2 and 1.6 k bases and AQP15 had a mRNA band of 2.1 k bases. Northern blot analysis was also performed on kidney and esophagus total RNA samples from fish acclimated to 75%, 100% or 120% seawater (SW). The level of AQP15 mRNA expression was shown to significantly decrease following salinity acclimation from 100 to 120% SW. An opposite but non-significantly different trend was observed for AQP3 mRNA levels. Full length cDNAs were then used to generate AQP3 and AQP15 mRNAs for microinjection into Xenopus oocytes. Both AQP3- and AQP15- microinjected oocytes exhibited significantly elevated apparent water permeability compared to control oocytes at neutral pH. The apparent water permeability was mercury-inhibitable, significantly so in the case of AQP3. AQP3 microinjected oocytes showed pH sensitivity in their apparent water permeability, showing a lack of permeability at acidic pH values. The Carboxyl-terminal derived amino acid sequences of AQP3 and AQP15 were used to generate rabbit affinity-purified polyclonal antibodies. Western blots with the antibodies showed a band of 31.3 kDa for AQP3 in the kidney, with minor bands at 26, 24 and 21 kDa. For AQP15 a band of 26 kDa was seen in gill and kidney. Fainter bands at 28 and 24 kDa were also seen in the kidney. There was also some higher molecular weight banding. None of the bands were seen when the antibodies were pre- blocked with their peptide antigens. Immunohistochemical localization studies were also performed in the gill and spiral valve intestine. In the gill, AQP15 antibody staining was seen sporadically in the membranes of surface epithelial cells of the secondary lamellae. Tyramide amplification of signals was employed in the spiral valve intestine. Tyramide-amplified AQP3 antibody staining was observed in the basal membrane of the invaginated epithelial cell layer of secondary intestinal folds in luminal surface of either the side wall of the spiral valve intestine or in internal valve tissue 'flaps'. For the AQP15 antibody, tyramide-amplified staining was instead found on the apical and to a lesser extent the lateral membranes of the same invaginated epithelial cell layer. The localization of AQP3 and AQP15 in the spiral valve intestine suggests that a trans-cellular water absorption pathway may exist in this tissue.


Subject(s)
Aquaporins , Fish Proteins/genetics , Squalus acanthias , Animals , Aquaporin 3/genetics , Aquaporins/genetics , Gills , Intestines , Squalus acanthias/genetics
5.
J Fish Biol ; 100(3): 609-618, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34882794

ABSTRACT

Leakiness of the swimbladder wall of teleost fishes must be prevented to avoid diffusional loss of gases out of the swimbladder. Guanine incrustation as well as high concentrations of cholesterol in swimbladder membranes in midwater and deep-sea fish has been connected to a reduced gas permeability of the swimbladder wall. On the contrary, the swimbladder is filled by diffusion of gases, mainly oxygen and CO2 , from the blood and the gas gland cells into the swimbladder lumen. In swimbladder tissue of the zebrafish and the Japanese eel, aquaporin mRNA has been detected, and the aquaporin protein has been considered important for the diffusion of water, which may accidentally be gulped by physostome fish when taking an air breath. In the present study, the expression of two aquaporin 1 genes (Aqp1aa and Aqp1ab) in the swimbladder tissue of the European eel, a functional physoclist fish, was assessed using immunohistochemistry, and the expression of both genes was detected in endothelial cells of swimbladder capillaries as well as in basolateral membranes of gas gland cells. In addition, Aqp1ab was present in apical membranes of swimbladder gas gland cells. The authors also found high concentrations of cholesterol in these membranes, which were several fold higher than in muscle tissue membranes. In yellow eels the cholesterol concentration exceeded the concentration detected in silver eel swimbladder membranes. The authors suggest that aquaporin 1 in swimbladder gas gland cells and endothelial cells facilitates CO2 diffusion into the blood, enhancing the switch-on of the Root effect, which is essential for the secretion of oxygen into the swimbladder. It may also facilitate CO2 diffusion into the swimbladder lumen along the partial gradient established by CO2 production in gas gland cells. Cholesterol has been shown to reduce the gas permeability of membranes and thus could contribute to the gas tightness of swimbladder membranes, which is essential to avoid diffusional loss of gas out of the swimbladder.


Subject(s)
Anguilla , Aquaporins , Air Sacs , Anguilla/genetics , Animals , Aquaporins/metabolism , Cholesterol/metabolism , Endothelial Cells , Zebrafish
6.
Biol Bull ; 229(1): 70-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26338871

ABSTRACT

Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.


Subject(s)
Aquaporins/metabolism , Fishes/physiology , Osmoregulation , Water/metabolism , Animals , Biological Transport , Gastrointestinal Tract/metabolism , Kidney/metabolism
7.
PLoS One ; 9(11): e113686, 2014.
Article in English | MEDLINE | ID: mdl-25426855

ABSTRACT

A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.


Subject(s)
Aquaporins/genetics , Biological Evolution , Multigene Family , Vertebrates/genetics , Adaptation, Physiological , Animals , Bayes Theorem , Evolution, Molecular , Phylogeny , Vertebrates/physiology
8.
Front Physiol ; 3: 21, 2012.
Article in English | MEDLINE | ID: mdl-22363294

ABSTRACT

The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells.

9.
Front Physiol ; 2: 107, 2011.
Article in English | MEDLINE | ID: mdl-22291652

ABSTRACT

The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill > intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (P(f)) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.

10.
J Exp Biol ; 212(17): 2856-63, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19684221

ABSTRACT

The European eel is a euryhaline teleost which has been shown to differentially up- and downregulate aquaporin (AQP) water channels in response to changes in environmental salinity. We have characterized the transport properties of four aquaporins localized to osmoregulatory organs - gill, esophagus, intestine and kidney. By sequence comparison these four AQP orthologs resemble human AQP1 (eel AQP1), AQP3 (eel AQP3) and AQP10 (AQPe). The fourth member is a duplicate form of AQP1 (AQP1dup) thought to arise from a duplication of the teleost genome. Using heterologous expression in Xenopus oocytes we demonstrate that all four eel orthologs transport water and are mercury inhibitable. Eel AQP3 and AQPe also transport urea and glycerol, making them aquaglyceroporins. Eel AQP3 is dramatically inhibited by extracellular acidity (91% and 69% inhibition of water and glycerol transport respectively at pH 6.5) consistent with channel gating by protons. Maximal water flux of eel AQP3 occurred around pH 8.2 - close to the physiological pH of plasma in the eel. Exposure of AQP-expressing oocytes to heavy metals revealed that eel AQP3 is highly sensitive to extracellular nickel and zinc (88.3% and 86.3% inhibition, respectively) but less sensitive to copper (56.4% inhibition). Surprisingly, copper had a stimulatory effect on eel AQP1 (153.7% activity of control). Copper, nickel and zinc did not affect AQP1dup or AQPe. We establish that all four eel AQP orthologs have similar transport profiles to their human counterparts, with eel AQP3 exhibiting some differences in its sensitivity to metals. This is the first investigation of the transport properties and inhibitor sensitivity of salinity-regulated aquaporins from a euryhaline species. Our results indicate a need to further investigate the deleterious effects of metal pollutants on AQP-containing epithelial cells of the gill and gastrointestinal tract at environmentally appropriate concentrations.


Subject(s)
Anguilla/metabolism , Aquaporins/metabolism , Fish Proteins/metabolism , Animals , Aquaporins/antagonists & inhibitors , Aquaporins/physiology , Biological Transport/drug effects , Copper/pharmacology , Fish Proteins/antagonists & inhibitors , Fish Proteins/physiology , Hydrogen-Ion Concentration , Nickel/pharmacology , Water/metabolism , Xenopus , Zinc/pharmacology
11.
Physiol Genomics ; 31(3): 385-401, 2007 Nov 14.
Article in English | MEDLINE | ID: mdl-17666525

ABSTRACT

In euryhaline teleosts, osmoregulation is a fundamental and dynamic process that is essential for the maintenance of ion and water balance, especially when fish migrate between fresh water (FW) and sea water (SW) environments. The European eel has proved to be an excellent model species to study the molecular and physiological adaptations associated with this osmoregulatory plasticity. The life cycle of the European eel includes two migratory periods, the second being the migration of FW eels back to the Sargasso Sea for reproduction. Various anatomical and physiological changes allow the successful transition to SW. The aim of this study was to use a microarray approach to screen the osmoregulatory tissues of the eel for changes in gene expression following acclimation to SW. Tissues were sampled from fish at selected intervals over a 5-mo period following FW/SW transfer, and RNA was isolated. Suppressive subtractive hybridization was used for enrichment of differentially expressed genes. Microarrays comprising 6,144 cDNAs from brain, gill, intestine, and kidney libraries were hybridized with appropriate targets and analyzed; 229 differentially expressed clones with unique sequences were identified. These clones represented the sequences for 95 known genes, with the remaining sequences (59%) being unknown. The results of the microarray analysis were validated by quantification of 28 differentially expressed genes by Northern blotting. A number of the differentially expressed genes were already known to be involved in osmoregulation, but the functional roles of many others, not normally associated with ion or water transport, remain to be characterized.


Subject(s)
Eels/physiology , RNA, Messenger/genetics , Water-Electrolyte Balance/physiology , Animals , Eels/genetics , Fresh Water , Life Cycle Stages , Oligonucleotide Array Sequence Analysis , Seawater
12.
Biol Cell ; 97(8): 615-27, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15850452

ABSTRACT

BACKGROUND INFORMATION: The European eel (Anguilla anguilla) is able to osmoregulate over a wide range of environmental salinities from FW (freshwater) to hyperconcentrated SW (seawater). Successful acclimation is associated with strict regulation of ion and water transport pathways within key osmoregulatory epithelia to enable animals to survive the dehydrating or oedematous conditions. These observations suggested that homologues of the AQP (aquaporin) water channel family were expressed in the eel and that these proteins may contribute to the water transport and osmoregulation in all euryhaline teleosts. RESULTS: Complementary DNAs encoding a homologue of the mammalian aquaglyceroporins (termed AQPe) and two homologues of mammalian aquaporin-1 [termed AQP1 and AQP1dup (aquaporin-1 duplicate)] were isolated from the European eel. Northern-blot analysis revealed (i) two AQP1 transcripts exhibiting a wide tissue distribution, (ii) a single AQP1dup mRNA transcript found in the kidney and the oesophagus, and (iii) a single AQPe mRNA detectable mainly in the kidney and the intestine. The relative expression of isoforms within the kidney was AQP1dup>AQPe>AQP1. SW acclimation significantly reduced the abundance of AQP1, AQP1dup and AQPe transcripts in the kidney of yellow eels by approx. 72, 66 and 34% respectively, whereas the expression levels in silver eels were independent of salinity and equivalent to those observed in yellow SW-acclimated fish. AQP1 protein expression was primarily located within the vascular endothelium in yellow eels and the epithelial apical brush border in some renal tubules in silver eels. Infusion of cortisol into FW eels had no effect on AQPe mRNA expression, but induced significant decreases in AQP1 and AQP1dup mRNA levels in the kidney of yellow eels. Cortisol infusion had no effect on the expression of any isoform in the silver eels. CONCLUSIONS: These results suggest that SW-acclimation or cortisol infusion induces a down-regulation of renal AQP expression in yellow eels. However, the lower levels of aquaporin expression found within the silver eel kidney were not further reduced by salinity transfer or steroid infusion. These differences in mRNA expression were accompanied by changes in the cellular distribution of the AQP1 protein between vascular endothelial and tubular epithelial cells.


Subject(s)
Acclimatization , Anguilla/genetics , Aquaporins/metabolism , Cloning, Molecular , Hydrocortisone/pharmacology , Kidney/metabolism , Acclimatization/physiology , Amino Acid Sequence , Anguilla/metabolism , Animal Migration/physiology , Animals , Aquaporin 1 , Aquaporins/genetics , Base Sequence , Blotting, Northern , Female , Fresh Water , Immunohistochemistry , Kidney/drug effects , Male , Molecular Sequence Data , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seawater , Tissue Distribution
13.
Am J Physiol Regul Integr Comp Physiol ; 288(6): R1733-43, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15650119

ABSTRACT

Complementary DNAs encoding homologs of the mammalian aquaglyceroporins (termed AQPe) and aquaporin-1 isoforms (termed AQP1) were isolated from the European eel. The AQP amino acid sequences share 35-54% identity with other known human AQPs. Although AQPe mRNA expression was approximately equivalent along the entire length of the gut, AQP1 expression was the highest in the posterior/rectal segment. Seawater (SW) acclimation increased AQP1 mRNA abundance by 5- and 17-fold in the anterior, 14- and 23-fold in the mid-, and 9- and 7-fold in the posterior/rectal gut regions of yellow and silver eels, respectively. SW acclimation had an effect on AQPe mRNA expression only in the midintestine of silver eels, where a small but significant 1.7-fold increase in abundance was measured. Western blots using an eel AQP1-specific antibody identified the presence of a major immunoreactive 28-kDa protein, primarily within the posterior/rectal segment. A 3-wk SW transfer induced an increase in AQP1 protein abundance in all intestinal segments, with the posterior/rectal region still expressing protein levels approximately 40- and 8-fold higher than the anterior and midsegments, respectively. Strong AQP1 immunofluorescence was detected within the vascular endothelium in both freshwater (FW)- and SW-acclimated eels and in the epithelial apical brush border in the posterior/rectal gut regions of SW-acclimated eels. Cortisol infusion into FW eels had no effect on intestinal AQPe mRNA expression but induced increases in AQP1 mRNA and protein levels. These results provide evidence for the presence of a SW-induced and steroid-regulated AQP water channel pathway within the intestine of the European eel.


Subject(s)
Adaptation, Physiological/physiology , Aquaporins/biosynthesis , Eels/physiology , Hydrocortisone/pharmacology , Intestines/physiology , Seawater , Amino Acid Sequence , Animal Migration/physiology , Animals , Aquaporin 1 , Aquaporins/genetics , Blotting, Northern , Cloning, Molecular , DNA/biosynthesis , DNA/genetics , Gene Expression Regulation/drug effects , Hydrocortisone/administration & dosage , Hydrocortisone/blood , Intestinal Mucosa/metabolism , Microscopy, Fluorescence , Molecular Sequence Data , RNA/biosynthesis , RNA/isolation & purification
14.
J Biol Chem ; 278(39): 37427-38, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-12874284

ABSTRACT

In Na,K-ATPase membrane preparations from shark rectal glands, we have previously identified an FXYD domain-containing protein, phospholemman-like protein from shark, PLMS. This protein was shown to associate and modulate shark Na,K-ATPase activity in vitro. Here we describe the complete coding sequence, expression, and cellular localization of PLMS in the rectal gland of the shark Squalus acanthias. The mature protein contained 74 amino acids, including the N-terminal FXYD motif and a C-terminal protein kinase multisite phosphorylation motif. The sequence is preceded by a 20 amino acid candidate cleavable signal sequence. Immunogold labeling of the Na,K-ATPase alpha-subunit and PLMS showed the presence of alpha and PLMS in the basolateral membranes of the rectal gland cells and suggested their partial colocalization. Furthermore, through controlled proteolysis, the C terminus of PLMS containing the protein kinase phosphorylation domain can be specifically cleaved. Removal of this domain resulted in stimulation of maximal Na,K-ATPase activity, as well as several partial reactions. Both the E1 approximately P --> E2-P reaction, which is partially rate-limiting in shark, and the K+ deocclusion reaction, E2(K) --> E1, are accelerated. The latter may explain the finding that the apparent Na+ affinity was increased by the specific C-terminal PLMS truncation. Thus, these data are consistent with a model where interaction of the phosphorylation domain of PLMS with the Na,K-ATPase alpha-subunit is important for the modulation of shark Na,K-ATPase activity.


Subject(s)
Fish Proteins/physiology , Phosphoproteins/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chloride Channels , Cloning, Molecular , Fish Proteins/analysis , Fish Proteins/genetics , Immunohistochemistry , Molecular Sequence Data , Phosphoproteins/analysis , Phosphoproteins/genetics , Phosphorylation , Potassium/metabolism , Protein Subunits , Sharks , Sodium-Potassium-Exchanging ATPase/chemistry , Trypsin/pharmacology
15.
Biochim Biophys Acta ; 1566(1-2): 92-103, 2002 Nov 13.
Article in English | MEDLINE | ID: mdl-12421541

ABSTRACT

Two cDNA isoforms of the NKCC1 secretory cotransporter have been isolated from the European eel. The NKCC1a isoform exhibited mRNA expression in a wide range of tissues in a similar fashion to mammals, whereas NKCC1b was expressed primarily in the brain. The effect of freshwater (FW) to seawater (SW) transfer on NKCC1a expression was dependent on the developmental stage. In non-migratory yellow eels, NKCC1a mRNA expression in the gill was transiently up-regulated 4.3-fold after 2 days but also subsequently by 2.5-6-fold 3 weeks after SW transfer. Gill NKCC1a expression was localised mainly in branchial chloride cells of SW acclimated yellow eels. In contrast to yellow eels, NKCC1a mRNA abundance was not significantly different following SW acclimation in silver eel gill. NKCC1a mRNA abundance decreased in the kidney following SW acclimation and this may correlate with lower tubular ion/fluid secretion and urine flow rates in SW teleosts. Kidney NKCC1a mRNA expression in silver eels was also significantly lower than in yellow eels, suggesting some pre-acclimation of mRNA levels. NKCC1a mRNA was expressed at similar low levels in the middle intestine of FW- and SW-acclimated yellow or silver eels, suggesting the presence of an ion secretory mechanism in this gut segment.


Subject(s)
Anguilla/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Acclimatization , Amino Acid Sequence , Animals , Blotting, Northern , Cloning, Molecular , DNA, Complementary/chemistry , Epithelium/metabolism , Fresh Water , Gene Expression Regulation , Gills/metabolism , Immunohistochemistry , Kidney/metabolism , Molecular Sequence Data , Protein Isoforms/metabolism , RNA, Messenger/analysis , Seawater , Sequence Alignment , Sodium-Potassium-Chloride Symporters/chemistry , Sodium-Potassium-Chloride Symporters/genetics , Solute Carrier Family 12, Member 1 , Solute Carrier Family 12, Member 2
16.
J Exp Biol ; 205(Pt 17): 2643-51, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12151370

ABSTRACT

A cDNA encoding the homologue of mammalian aquaporin 3 (AQP-3) was isolated by reverse transcription-polymerase chain reaction from the gill of the European eel. The derived amino acid sequence shares 67-70% homology with other vertebrate AQP-3 homologues. Northern blot analysis revealed two AQP-3-specific mRNA species of 2.4 kb and 7 kb. AQP-3 mRNA is expressed predominantly in the eye, oesophagus, intestine (as found in mammals) and the gill; no expression could be demonstrated in the stomach and only low and sporadic levels in the kidney. Quantitative studies demonstrated that, following the 3-week acclimation of freshwater (FW)-adapted yellow and silver eels to seawater (SW), transcript abundance in the gill was reduced by 76% and 97%, respectively. The half time of branchial AQP-3 mRNA downregulation in yellow eels was approximately 10 h, with a maximal 94% decrease in expression after 2 days in SW (compared to time-matched FW controls). However, in fish acclimated to SW for more than 4 days, the fall in AQP-3 mRNA abundance recovered slightly, such that after 3 weeks, expression was 16% of that in time-matched FW controls. The potential roles for this aquaporin isoform in water or solute transport in the eel gill are discussed.


Subject(s)
Anguilla/genetics , Anguilla/physiology , Aquaporins/genetics , Acclimatization/genetics , Acclimatization/physiology , Amino Acid Sequence , Animals , Aquaporin 3 , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Down-Regulation , Gills/metabolism , Intestinal Mucosa/metabolism , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seawater , Sequence Homology, Amino Acid
17.
J Exp Biol ; 205(Pt 17): 2653-63, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12151371

ABSTRACT

The expression of a putative water channel protein, aquaporin 3 (AQP-3), has been localised within branchial and intestinal tissues from the 'silver' life stage of the European eel Anguilla anguilla, using a specific polyclonal antibody directed against the C-terminal of the amino acid sequence. Western blots using the AQP-3 antiserum identified the presence of a major immunoreactive protein of 24 kDa in extracts of gills from both freshwater (FW) and 3 week seawater (SW)-acclimated eels. SW acclimation induced a 65 % reduction in AQP-3 protein abundance in the gill extracts. AQP-3 immunoreactivity was apparent throughout the branchial epithelium from both FW and SW-acclimated fish, but especially so within the chloride cells, which also stained heavily with specific antisera for the beta-subunit of the Na, K-ATPase. AQP-3 immunoreactivity not only colocalised with Na, K-ATPase within the basolateral tubular network but also stained the apical regions of the chloride cell where Na, K-ATPase was absent. Although there were no obvious differences in expression between the chloride cells of FW and SW-acclimated fish, considerably higher intensities of immunoreactivity were apparent near the periphery of the non-chloride cells of FW fish, especially within cells forming the base of the primary filaments and the branchial arch. AQP-3 immunoreactivity was also detected in intra-epithelial macrophage-like cells within the intestine of FW and SW-acclimated eels and in the mucous cells of the rectal epithelium of SW-acclimated fish. These results suggest that AQP-3 may play an important functional role in osmoregulation the teleostean gill but is unlikely to be responsible for the increases in intestinal water absorption that occur following SW acclimation.


Subject(s)
Anguilla/metabolism , Aquaporins/metabolism , Digestive System/metabolism , Gills/metabolism , Acclimatization/physiology , Anguilla/anatomy & histology , Anguilla/physiology , Animals , Aquaporin 3 , Digestive System/ultrastructure , Fresh Water , Gills/ultrastructure , Immunohistochemistry , Microscopy, Confocal , Microscopy, Fluorescence , Microscopy, Immunoelectron , Seawater , Water-Electrolyte Balance
SELECTION OF CITATIONS
SEARCH DETAIL
...