Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Hum Reprod ; 38(1): 180-188, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36350568

ABSTRACT

STUDY QUESTION: Are chromosome abnormalities detected at Day 3 post-fertilization predominantly retained in structures of the blastocyst other than the inner cell mass (ICM), where chromosomally normal cells are preferentially retained? SUMMARY ANSWER: In human embryos, aneuploid cells are sequestered away from the ICM, partly to the trophectoderm (TE) but more significantly to the blastocoel fluid within the blastocoel cavity (Bc) and to peripheral cells (PCs) surrounding the blastocyst during Day 3 to Day 5 progression. WHAT IS KNOWN ALREADY: A commonly held dogma in all diploid eukaryotes is that two gametes, each with 'n' chromosomes (23 in humans), fuse to form a '2n' zygote (46 in humans); a state that remains in perpetuity for all somatic cell divisions. Human embryos, however, display high levels of chromosomal aneuploidy in early stages that reportedly declines from Day 3 (cleavage stage) to Day 5 (blastocyst) post-fertilization. While this observation may be partly because of aneuploid embryonic arrest before blastulation, it could also be due to embryo 'normalization' to a euploid state during blastulation. If and how this normalization occurs requires further investigation. STUDY DESIGN, SIZE, DURATION: A total of 964 cleavage-stage (Day 3) embryos underwent single-cell biopsy and diagnosis for chromosome constitution. All were maintained in culture, assessing blastulation rate, both for those assessed euploid and aneuploid. Pregnancy rate was assessed for those determined euploid, blastulated and subsequently transferred. For those determined aneuploid and blastulated (174 embryos), ICM (all 174 embryos), TE (all 174), Bc (47 embryos) and PC (38 embryos) were analyzed for chromosome constitution. Specifically, concordance with the original Day 3 diagnosis and determination if any 'normalized' to euploid karyotypes within all four structures was assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS: All patients (144 couples) were undergoing routine preimplantation genetic testing for aneuploidy in three IVF clinical settings. Cleavage-stage biopsy preceded chromosome analysis by next-generation sequencing. All patients provided informed consent. Additional molecular testing was carried out on blastocyst embryos and was analyzed for up to four embryonic structures (ICM, TE, Bc and PC). MAIN RESULTS AND THE ROLE OF CHANCE: Of 463/964 embryos (48%) diagnosed as euploid at Day 3, 70% blastulated (leading to a 59% pregnancy rate) and 30% degenerated. Conversely, of the 501 (52%) diagnosed as aneuploid, 65% degenerated and 35% (174) blastulated, a highly significant difference (P < 0.0001). Of the 174 that blastulated, the ratio of '(semi)concordant-aneuploid' versus 'normalized-euploid' versus 'other-aneuploid' embryos was, respectively, 39%/57%/3% in the ICM; 49%/48%/3% in the TE; 78%/21%/0% in the PC; and 83%/10%/5% in the Bc. The TE karyotype therefore has a positive predictive value of 86.7% in determining that of the ICM, albeit with marginally higher aneuploid rates of abnormalities (P = .071). Levels of abnormality in Bc/PC were significantly higher (P < 0.0001) versus the ploidy of the ICM and TE and nearly all chromosome abnormalities were (at least partially) concordant with Day 3 diagnoses. LIMITATIONS, REASONS FOR CAUTION: The results only pertain to human IVF embryos so extrapolation to the in vivo situation and to other species is not certain. We acknowledge (rather than lineage-specific survival, as we suggest here) the possibility of other mechanisms, such as lineage-specific movement of cells, during blastulation. Ethical considerations, however, make investigating this mechanism difficult on human embryos. WIDER IMPLICATIONS OF THE FINDINGS: Mosaic human cleavage-stage embryos can differentiate into a euploid ICM where euploid cell populations predominate. Sequestering of aneuploid cells/nuclei to structures no longer involved in fetal development has important implications for preimplantation and prenatal genetic testing. These results also challenge previous fundamental understandings of mitotic fidelity in early human development and indicate a complex and fluid nature of the human embryonic genome. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by Organon Pharmaceuticals and Merck Serono by grants to W.G.K. W.G.K. is also an employee of AdvaGenix, who could, potentially, indirectly benefit financially from publication of this manuscript. R.C.M. is supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM133747. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. D.K.G. provides paid consultancy services for Care Fertility. TRIAL REGISTRATION NUMBER: : N/A.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Blastocyst , Chromosome Aberrations , Aneuploidy , Karyotype , Fetus
2.
J Cyst Fibros ; 21(6): 922-936, 2022 11.
Article in English | MEDLINE | ID: mdl-36207272

ABSTRACT

The spectrum of disorders involving CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction correlates with a continuous gradient of CFTR function defined by the combination of two allelic CFTR variants. CFTR-related disorders are clinical entities with features of cystic fibrosis (CF) and evidence for presence of CFTR dysfunction but not meeting criteria for diagnosis of CF. Individuals with CFTR-RDs demonstrate a wide range of CFTR activity and are still under-recognized or misclassified. The level of CFTR dysfunction may be measured in vivo (sweat testing, nasal potential difference measurements) and/or by ex vivo tests (intestinal current measurement), or indirectly indicated by CFTR variants, as alteration in sequence of the CFTR gene translates into CFTR dysfunction. CFTR bioassays can aid in the diagnosis of individuals with CF, but we lack parameters to differentiate CF from CFTR-RD. In the era of the CFTR modulators and their potential clinical benefit, it is of utmost importance to diagnose CFTR-RD as unambiguously as possible. We therefore propose the following to define compatible CFTR dysfunction in a person with a suspected diagnosis of CFTR-RD : (1) evidence of CFTR dysfunction in vivo or ex vivo in at least two different CFTR functional test types, or (2) One CFTR variant known to reduce CFTR function and evidence of CFTR dysfunction in vivo or ex vivo in at least two different CFTR functional test types, or (3) Two CFTR variants shown to reduce CFTR function, with at most one CF-causing variant.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Standard of Care , Sweat/metabolism , Ion Transport , Mutation
3.
J Cyst Fibros ; 19 Suppl 1: S5-S9, 2020 03.
Article in English | MEDLINE | ID: mdl-31879237

ABSTRACT

Genetics is the branch of biology concerned with study of individual genes and how they work whereas genomics is involved with the analysis of all genes and their interactions. Both of these approaches have been applied extensively to CF. Identification of the CFTR gene initiated the dissection of CF genetics at the molecular level. Subsequently, thousands of variants were found in the gene and the functional consequences of a subset have been studied in detail. The completion of the human genome ushered in a new phase of study where the role of genes beyond CFTR could be evaluated for their contribution to the severity of CF. This will be a brief overview of the contribution of these complementary methods to our understanding of CF pathogenesis.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Genetic Techniques , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Genes, Modifier , Genetic Association Studies , Genetic Linkage , Genetic Testing/methods , Humans , Severity of Illness Index
4.
J Cyst Fibros ; 18(5): 606-613, 2019 09.
Article in English | MEDLINE | ID: mdl-30803905

ABSTRACT

BACKGROUND: Cell-based studies have shown that W1282X generates a truncated protein that can be functionally augmented by modulators. However, modulator treatment of primary cells from individuals who carry two copies of W1282X generates no functional CFTR. To understand the lack of response to modulators, we investigated the effect of W1282X on CFTR RNA transcript levels. METHODS: qRT-PCR and RNA-seq were performed on primary nasal epithelial (NE) cells of a previously studied individual who is homozygous for W1282X, her carrier parents and control individuals without nonsense variants in CFTR. RESULTS: CFTR RNA bearing W1282X in NE cells shows a steady-state level of 4.2 ±â€¯0.9% of wild-type (WT) CFTR RNA in the mother and 12.4 ±â€¯1.3% in the father. NMDI14, an inhibitor of nonsense-mediated mRNA decay (NMD), restored W1282X mRNA to almost 50% of WT levels in the parental NE cells. RNA-seq of the NE cells homozygous for W1282X showed that CFTR transcript level was reduced to 1.7% of WT (p-value: 4.6e-3). Negligible truncated CFTR protein was generated by Flp-In 293 cells stably expressing the W1282X EMG even though CFTR transcript was well above levels observed in the parents and proband. Finally, we demonstrated that NMD inhibition improved the stability and response to correctors of W1282X-CFTR protein expressed in the Flp-In-293 cells. CONCLUSION: These results show that W1282X can cause substantial degradation of CFTR mRNA that has to be addressed before efforts aimed at augmenting CFTR protein function can be effective.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Membrane Transport Modulators/pharmacology , RNA, Messenger , Cells, Cultured , Codon, Nonsense , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Gene Expression Profiling , Homozygote , Humans , Mutation , Nasal Mucosa/metabolism , Protein Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
J Cyst Fibros ; 10 Suppl 2: S86-102, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21658649

ABSTRACT

Several diseases have been clinically or genetically related to cystic fibrosis (CF), but a consensus definition is lacking. Here, we present a proposal for consensus guidelines on cystic fibrosis transmembrane conductance regulator (CFTR)-related disorders (CFTR-RDs), reached after expert discussion and two dedicated workshops. A CFTR-RD may be defined as "a clinical entity associated with CFTR dysfunction that does not fulfil diagnostic criteria for CF". The utility of sweat testing, mutation analysis, nasal potential difference, and/or intestinal current measurement for the differential diagnosis of CF and CFTR-RD is discussed. Algorithms which use genetic and functional diagnostic tests to distinguish CF and CFTR-RDs are presented. According to present knowledge, congenital bilateral absence of vas deferens (CBAVD), acute recurrent or chronic pancreatitis and disseminated bronchiectasis, all with CFTR dysfunction, are CFTR-RDs.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/classification , Cystic Fibrosis/genetics , Medicine/standards , Practice Guidelines as Topic , Cystic Fibrosis/physiopathology , Europe , Humans
6.
Clin Genet ; 79(2): 136-46, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20681990

ABSTRACT

It is generally presumed that the cystic fibrosis (CF) population is relatively homogeneous, and predominantly of European origin. The complex ethnic make-up observed in the CF patients collected by the North American CF Modifier Gene Consortium has brought this assumption into question, and suggested the potential for population substructure in the three CF study samples collected from North America. It is well appreciated that population substructure can result in spurious genetic associations. To understand the ethnic composition of the North American CF population, and to assess the need for population structure adjustment in genetic association studies with North American CF patients, genome-wide single-nucleotide polymorphisms on 3076 unrelated North American CF patients were used to perform population structure analyses. We compared self-reported ethnicity to genotype-inferred ancestry, and also examined whether geographic distribution and cystic fibrosis transmembrane regulator (CFTR) mutation type could explain the population structure observed. Although largely Caucasian, our analyses identified a considerable number of CF patients with admixed African-Caucasian, Mexican-Caucasian and Indian-Caucasian ancestries. Population substructure was present and comparable across the three studies of the consortium. Neither geographic distribution nor CFTR mutation type explained the population structure. Given the ethnic diversity of the North American CF population, it is essential to carefully detect, estimate and adjust for population substructure to guard against potential spurious findings in CF genetic association studies. Other Mendelian diseases that are presumed to predominantly affect single ethnic groups may also benefit from careful analysis of population structure.


Subject(s)
Cystic Fibrosis/ethnology , Cystic Fibrosis/epidemiology , Demography , Genome-Wide Association Study , Ethnicity/statistics & numerical data , Genotype , Humans , North America , Principal Component Analysis
7.
Am J Med Genet A ; 149A(8): 1624-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19572402

ABSTRACT

Interpretation of the pathogenicity of sequence alterations in disease-associated genes is challenging. This is especially true for novel alterations that lack obvious functional consequences. We report here on a patient with Treacher Collins syndrome (TCS) found to carry a previously reported mutation, c.122C > T, which predicts p.A41V, and a novel synonymous mutation, c.3612A > C. Pedigree analysis showed that the c.122C > T mutation segregated with normal phenotypes in multiple family members while the c.3612A > C was de novo in the patient. Analysis of TCOF1 RNA in lymphocytes showed a transcript missing exon 22. These results show that TCS in the patient is due to haploinsufficiency of TCOF1 caused by the synonymous de novo c.3612A > C mutation. This study highlights the importance of clinical and pedigree evaluation in the interpretation of known and novel sequence alterations.


Subject(s)
Exons/genetics , Mandibulofacial Dysostosis/genetics , Mutation/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , RNA Splicing/genetics , Enhancer Elements, Genetic/genetics , Female , Humans , Infant , Male , Pedigree , Siblings
8.
Diabetologia ; 52(9): 1858-65, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19585101

ABSTRACT

AIMS/HYPOTHESIS: Insulin-requiring diabetes affects 25-50% of young adults with cystic fibrosis (CF). Although the cause of diabetes in CF is unknown, recent heritability studies in CF twins and siblings indicate that genetic modifiers play a substantial role. We sought to assess whether genes conferring risk for diabetes in the general population may play a risk modifying role in CF. METHODS: We tested whether a family history of type 2 diabetes affected diabetes risk in CF patients in 539 families in the CF Twin and Sibling family-based study. A type 2 diabetes susceptibility gene (transcription factor 7-like 2, or TCF7L2) was evaluated for association with diabetes in CF using 998 patients from the family-based study and 802 unrelated CF patients in an independent case-control study. RESULTS: Family history of type 2 diabetes increased the risk of diabetes in CF (OR 3.1; p = 0.0009). A variant in TCF7L2 associated with type 2 diabetes (the T allele at rs7903146) was associated with diabetes in CF in the family study (p = 0.004) and in the case-control study (p = 0.02; combined p = 0.0002). In the family-based study, variation in TCF7L2 increased the risk of diabetes about three-fold (HR 1.75 per allele, 95% CI 1.3-2.4; p = 0.0006), and decreased the mean age at diabetes diagnosis by 7 years. In CF patients not treated with systemic glucocorticoids, the effect of TCF7L2 was even greater (HR 2.9 per allele, 95% CI 1.7-4.9, p = 0.00011). CONCLUSIONS/INTERPRETATION: A genetic variant conferring risk for type 2 diabetes in the general population is a modifier of risk for diabetes in CF.


Subject(s)
Cystic Fibrosis/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , TCF Transcription Factors/genetics , Adolescent , Adult , Child, Preschool , Cystic Fibrosis/drug therapy , Cystic Fibrosis/epidemiology , Cystic Fibrosis/surgery , DNA/genetics , Family , Female , Genetic Variation , Glucocorticoids/therapeutic use , Humans , Infant , Lung Transplantation , Male , Odds Ratio , Prevalence , Respiratory Function Tests , Risk Factors , Siblings , Surveys and Questionnaires , Transcription Factor 7-Like 2 Protein
9.
J Cyst Fibros ; 7(3): 179-96, 2008 May.
Article in English | MEDLINE | ID: mdl-18456578

ABSTRACT

It is often challenging for the clinician interested in cystic fibrosis (CF) to interpret molecular genetic results, and to integrate them in the diagnostic process. The limitations of genotyping technology, the choice of mutations to be tested, and the clinical context in which the test is administered can all influence how genetic information is interpreted. This paper describes the conclusions of a consensus conference to address the use and interpretation of CF mutation analysis in clinical settings. Although the diagnosis of CF is usually straightforward, care needs to be exercised in the use and interpretation of genetic tests: genotype information is not the final arbiter of a clinical diagnosis of CF or CF transmembrane conductance regulator (CFTR) protein related disorders. The diagnosis of these conditions is primarily based on the clinical presentation, and is supported by evaluation of CFTR function (sweat testing, nasal potential difference) and genetic analysis. None of these features are sufficient on their own to make a diagnosis of CF or CFTR-related disorders. Broad genotype/phenotype associations are useful in epidemiological studies, but CFTR genotype does not accurately predict individual outcome. The use of CFTR genotype for prediction of prognosis in people with CF at the time of their diagnosis is not recommended. The importance of communication between clinicians and medical genetic laboratories is emphasized. The results of testing and their implications should be reported in a manner understandable to the clinicians caring for CF patients.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , DNA Mutational Analysis , Humans , Nutritional Status/genetics , Polymorphism, Genetic , Prognosis , Protein Splicing , Quality Control , Respiratory Function Tests , Terminology as Topic
10.
J Med Genet ; 42(1): 38-44, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15635073

ABSTRACT

OBJECTIVES: The prenatal diagnosis of peroxisomal disorders is most often performed by biochemical analysis of cultured chorionic villus sample (CVS) or amniocytes. We aimed to (a) highlight the risk of maternal cell contamination (MCC) in biochemical prenatal diagnosis, (b) establish the threshold of these biochemical assays to MCC, and (c) document the sensitivity of PCR based genotyping of microsatellites for the detection of MCC in prenatal diagnosis of inborn errors by biochemical analysis. METHODS: The threshold of each biochemical assay was assessed by co-cultivating fibroblasts from known affected and normal individuals. Genotypes for three polymorphic loci were determined by PCR and GeneScan analysis. The sensitivity of the molecular test was determined by DNA mixing experiments and isolation of DNA from co-cultivated fibroblasts. RESULTS: MCC was detected in 2.5% of at risk CVS cultures (n = 79). Co-cultivation of defective and normal fibroblasts demonstrated that the peroxisomal biochemical assays were accurate at 25% contamination. Very low level DNA or cell contamination (1-5%) was detectable by genotyping, but an allele did not yield a definitive peak based on morphology until approximately 10% contamination. Furthermore, we demonstrated that other inborn errors of metabolism might be more susceptible to diagnostic error by low level MCC. CONCLUSION: The sensitivity of the microsatellite analysis (> or =10%) is well within the threshold of peroxisomal biochemical assays. Although peroxisomal biochemical assays would not be predicted to introduce a false positive or negative result if MCC <10% were present but not recognised by molecular analysis, the same may not be true for other inborn errors of metabolism.


Subject(s)
Chorionic Villi Sampling/methods , Chorionic Villi/pathology , Equipment Contamination , Peroxisomal Disorders/diagnosis , Peroxisomal Disorders/embryology , Prenatal Diagnosis , Cell Culture Techniques/methods , Female , Genotype , Humans , Microsatellite Repeats , Peroxisomal Disorders/genetics , Polymerase Chain Reaction , Pregnancy , Reproducibility of Results , Sensitivity and Specificity
12.
Clin Exp Allergy ; 32(5): 756-61, 2002 May.
Article in English | MEDLINE | ID: mdl-11994102

ABSTRACT

BACKGROUND: Previous work suggests that cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations may be implicated in the aetiology of allergic bronchopulmonary aspergilosis (ABPA). OBJECTIVE: To compare the frequency of CF gene mutations in asthmatics with ABPA of varying severity with asthmatics who were skin prick test (SPT)-positive to Aspergillus fumigatus (Af) without evidence of ABPA and asthmatics SPT-negative to Af. METHODS: Thirty-one Caucasian patients with ABPA were identified, together with asthmatics SPT positive to Af without evidence of ABPA (n = 23) and SPT negative to Af (n = 28). Genomic DNA was tested for 16 CF mutations accounting for approximately 85% of CF alleles in Caucasian New Zealanders. RESULTS: Four (12.9%) ABPA patients were found to be carriers of a CF mutation (DeltaF508 n = 3, R117H n = 1), one (4.3%) asthmatic SPT positive to Af without ABPA (DeltaF508), and one (3.6%) asthmatic SPT negative to Af (R117H). All patients with a CF mutation had normal sweat chloride (< 40 mM). There was no significant difference between the frequency of CF mutations in the ABPA patients and asthmatics without ABPA. However, the frequency of CF mutations in the ABPA patients was significantly different (P = 0.0125) to the expected carrier rate in the general population. CONCLUSION: These results lend further support to a possible link between CF mutations and ABPA.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Adult , Aged , Aged, 80 and over , Aspergillosis, Allergic Bronchopulmonary/etiology , Aspergillosis, Allergic Bronchopulmonary/immunology , Female , Humans , Male , Middle Aged , Mutation , Skin Tests
13.
Hum Mutat ; 18(6): 499-515, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11748843

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC half-transporter (ALDP) involved in the import of very long-chain fatty acids (VLCFA) into the peroxisome. The disease is characterized by a striking and unpredictable variation in phenotypic expression. Phenotypes include the rapidly progressive childhood cerebral form (CCALD), the milder adult form, adrenomyeloneuropathy (AMN), and variants without neurologic involvement. There is no apparent correlation between genotype and phenotype. In males, unambiguous diagnosis can be achieved by demonstration of elevated levels of VLCFA in plasma. In 15 to 20% of obligate heterozygotes, however, test results are false-negative. Therefore, mutation analysis is the only reliable method for the identification of heterozygotes. Since most X-ALD kindreds have a unique mutation, a great number of mutations have been identified in the ABCD1 gene in the last seven years. In order to catalog and facilitate the analysis of these mutations, we have established a mutation database for X-ALD ( http://www.x-ald.nl). In this review we report a detailed analysis of all 406 X-ALD mutations currently included in the database. Also, we present 47 novel mutations. In addition, we review the various X-ALD phenotypes, the different diagnostic tools, and the need for extended family screening for the identification of new patients.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/genetics , Databases, Nucleic Acid , ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy/diagnosis , Genotype , Humans , Mutation , Phenotype
14.
Brain Res ; 912(1): 1-8, 2001 Aug 31.
Article in English | MEDLINE | ID: mdl-11520487

ABSTRACT

In this study, we compared the temporal expression pattern of four retinal genes; rho1 and rho2 that encode subunits of GABA(c) receptors, L7 that encodes Purkinje cell protein and CRX that encodes the cone-rod homeobox transcription factor. A reverse-transcription-polymerase chain reaction (RT-PCR) strategy that generated a linear correlation between the amount of retinal RNA and the amount of amplified product was used to quantify transcripts from each gene. Results with this method showed that the rho1 and L7 have similar developmental patterns. Both exhibit basal level expression before P7. From P7 to P20, the RNA levels for both genes were increased about 12-fold. After P20, the RNA levels remained unchanged. Compared to rho1 and L7, expression of rho2 began later, since the rho2 RNA could not be detected until P10. At P10, the rho2 RNA level was about 10% of its level at P35. Expression of rho2 reached its peak at a later developmental stage compared to that of rho1 and L7. The different temporal patterns were confirmed by co-amplification of rho1, rho2, and L7 in a single PCR tube. CRX RNA was detected at embryonic day 15 (E15) and increased progressively, in agreement with a prior study using in situ hybridization. These data, combined with evidence that the tissue distribution of rho1 and L7 RNA in the CNS are similar, indicates that rho1 and L7 may share common transcriptional regulatory elements. Furthermore, the difference in the timing of rho subunit expression suggests that the subunit composition of GABA(c) receptors vary during retinal development.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, GABA-B/genetics , Retina/embryology , Retina/growth & development , Trans-Activators/genetics , Aging/genetics , Animals , Animals, Newborn , Fetus , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Receptors, GABA , Receptors, GABA-A , Retina/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/physiology
17.
J Cell Sci ; 114(Pt 4): 719-26, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11171377

ABSTRACT

Localization of ion channels and transporters to the correct membrane of polarized epithelia is important for vectorial ion movement. Prior studies have shown that the cytoplasmic carboxyl terminus of the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the apical localization of this protein. Here we show that the C-terminal tail alone, or when fused to the green fluorescent protein (GFP), can localize to the apical plasma membrane, despite the absence of transmembrane domains. Co-expression of the C terminus with full-length CFTR results in redistribution of CFTR from apical to basolateral membranes, indicating that both proteins interact with the same target at the apical membrane. Amino acid substitution and deletion analysis confirms the importance of a PDZ-binding motif D-T-R-L> for apical localization. However, two other C-terminal regions, encompassing amino acids 1370-1394 and 1404-1425 of human CFTR, are also required for localizing to the apical plasma membrane. Based on these results, we propose a model of polarized distribution of CFTR, which includes a mechanism of selective retention of this protein in the apical plasma membrane and stresses the requirement for other C-terminal sequences in addition to a PDZ-binding motif.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Amino Acid Motifs , Animals , Blotting, Western , Cell Line , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dogs , Green Fluorescent Proteins , Luminescent Proteins/metabolism , Microscopy, Electron , Mutagenesis, Site-Directed
18.
JAMA ; 284(14): 1814-9, 2000 Oct 11.
Article in English | MEDLINE | ID: mdl-11025834

ABSTRACT

CONTEXT: Chronic rhinosinusitis (CRS) is a common condition in the US general population, yet little is known about its underlying molecular cause. Chronic rhinosinusitis is a consistent feature of the autosomal recessive disorder cystic fibrosis (CF). OBJECTIVE: To determine whether mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, which is responsible for CF, predispose to CRS. DESIGN: Case-control study conducted from 1996 to 1999 in which the DNA of CRS patients and controls was typed for 16 mutations that account for 85% of CF alleles in the general population. Chronic rhinosinusitis patients with 1 CF mutation were evaluated for a CF diagnosis by sweat chloride testing, nasal potential difference measurement, and DNA analysis for additional mutations. SETTING: Otolaryngology-head and neck clinic of a US teaching hospital. PARTICIPANTS: One hundred forty-seven consecutive adult white patients who met stringent diagnostic criteria for CRS and 123 CRS-free white control volunteers of similar age range, geographic region, and socioeconomic status. MAIN OUTCOME MEASURES: Presence of CF mutations by DNA analysis among CRS patients vs controls. RESULTS: Eleven CRS patients were found to have a CF mutation (DeltaF508, n = 9; G542X, n = 1; and N1303K, n = 1). Diagnostic testing excluded CF in 10 of these patients and led to CF diagnosis in 1. Excluding this patient from the analyses, the proportion of CRS patients who were found to have a CF mutation (7%) was significantly higher than in the control group (n = 2 [2%]; P =.04, both having DeltaF508 mutations). Furthermore, 9 of the 10 CF carriers had the polymorphism M470V, and M470V homozygotes were overrepresented in the remaining 136 CRS patients (P =.03). CONCLUSION: These data indicate that mutations in the gene responsible for CF may be associated with the development of CRS in the general population. JAMA. 2000;284:1814-1819.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Rhinitis/genetics , Sinusitis/genetics , Adult , Aged , Case-Control Studies , Chronic Disease , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Heterozygote , Homozygote , Humans , Male , Middle Aged , Polymorphism, Genetic , Rhinitis/diagnosis , Sinusitis/diagnosis , Sweat/chemistry
20.
Am J Ophthalmol ; 130(2): 197-202, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11004294

ABSTRACT

PURPOSE: To report the localization of a gene causing drusen and macular degeneration in a previously undescribed North American family. METHODS: Genetic mapping studies were performed using linkage analysis in a single family with drusen and atrophic macular degeneration. RESULTS: The clinical manifestations in this family ranged from fine macular drusen in asymptomatic middle-aged individuals to atrophic macular lesions in two children and two elderly patients. We mapped the gene to chromosome 6q14 between markers D6S2258 and D6S1644. CONCLUSIONS: In a family with autosomal dominant drusen and atrophic macular degeneration, the gene maps to a 3.2-cM region on chromosome 6q14. This locus appears to be distinct from, but adjacent to, the loci for cone-rod dystrophy 7 (CORD7) and North Carolina macular dystrophy (MCDR1). Future identification of the gene responsible for the disease in this family will provide a better understanding of macular degeneration.


Subject(s)
Chromosome Mapping , Chromosomes, Human, Pair 6/genetics , Macular Degeneration/genetics , Retinal Drusen/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Atrophy , Child , Child, Preschool , DNA/analysis , Female , Genetic Linkage , Genotype , Humans , Infant , Lod Score , Macula Lutea/pathology , Macular Degeneration/pathology , Male , Microsatellite Repeats , Middle Aged , Pedigree , Retinal Drusen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...