Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39130197

ABSTRACT

To date, there has been no comprehensive study characterizing the effect of diffusion-weighted magnetic resonance imaging voxel resolution on the resulting connectome for high resolution subject data. Similarity in results improved with higher resolution, even after initial down-sampling. To ensure robust tractography and connectomes, resample data to 1 mm isotropic resolution.

2.
PLoS One ; 19(7): e0304211, 2024.
Article in English | MEDLINE | ID: mdl-39052693

ABSTRACT

Substantial progress has been made in understanding the neurocognitive underpinnings of learning math. Building on this work, it has been hypothesized that declarative and procedural memory, two domain-general learning and memory systems, play important roles in acquiring math skills. In a longitudinal study, we tested whether in fact declarative and procedural memory predict children's math skills during elementary school years. A sample of 109 children was tested across grades 2, 3 and 4. Linear mixed-effects regression and structural equation modeling revealed the following. First, learning in declarative but not procedural memory was associated with math skills within each grade. Second, declarative but not procedural memory in each grade was related to math skills in all later grades (e.g., declarative memory in grade 2 was related to math skills in grade 4). Sensitivity analyses showed that the pattern of results was robust, except for the longitudinal prediction of later math skills when accounting for stable inter-individual differences via the inclusion of random intercepts. Our findings highlight the foundational role of early domain-general learning and memory in children's acquisition of math.


Subject(s)
Mathematics , Memory , Humans , Longitudinal Studies , Child , Female , Male , Memory/physiology , Learning/physiology
3.
Dev Cogn Neurosci ; 66: 101372, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593494

ABSTRACT

This fMRI study of 126 youth explored whether the neural mechanisms underlying the N-back task, commonly used to examine executive control over the contents of working memory, are associated with individual differences in academic achievement in reading and math. Moreover, the study explored whether these relationships occur regardless of the nature of the stimulus being manipulated in working memory (letters, numbers, nonsense shapes) or whether these relationships are specific to achievement domain and stimulus type (i.e., letters for reading and numbers for math). The results indicated that higher academic achievement in each of reading and math was associated with greater activation of dorsolateral prefrontal cortex in the N-back task regardless of stimulus type (i.e., did not differ for letters and numbers), suggesting that at least some aspects of the neural mechanisms underlying these academic domains are executive in nature. In addition, regardless of level of academic achievement, prefrontal regions were engaged to a greater degree for letters than numbers than nonsense shapes. In contrast, nonsense shapes yielded greater hippocampal activation than letters and numbers. Potential reasons for this pattern of findings are discussed.

4.
Mind Brain Educ ; 17(4): 267-278, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38737569

ABSTRACT

Despite decades of prior research, the mechanisms for how skilled reading develops remain elusive. Numerous studies have identified word recognition and oral language ability as key components to explain later reading comprehension performance. However, these components alone do not fully explain differences in reading achievement. There is ongoing work exploring other candidate processes important for reading, such as the domain-general cognitive ability of executive function (EF). Here, we summarize our work on the behavioral and neurobiological connections between EF and reading and present preliminary neuroimaging findings from ongoing work. Together, these studies suggest 1) that EF plays a supportive and perhaps indirect role in reading achievement and 2) that EF-related brain regions interface with the reading and language networks. While further work is needed to dissect the specifics of how EF interacts with reading, these studies begin to reveal the complex role that EF plays in reading development.

SELECTION OF CITATIONS
SEARCH DETAIL