Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Disabil Rehabil ; : 1-17, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557249

ABSTRACT

PURPOSE: This review assesses the effect of electrotherapy (e.g. functional electrical stimulation (FES), motor and sensor therapeutic electrical stimulation (TES)) on muscle strength and skeletal muscle characteristics in individuals post-stroke compared to conventional or sham therapy. METHODS: A systematic literature search was conducted in MEDLINE, SCOPUS, and Web of Science, focusing on randomized controlled trials investigating the effect of electrotherapy. Data of interest was extracted from eligible studies, and risk of bias was assessed. RESULTS: In total, 23 studies (933 people post-stroke) were included, of which 17, which mainly focus on patients in a chronic stage of stroke recovery and the implementation of FES, were incorporated in the meta-analysis. A significant increase in muscle strength was found favoring electrotherapy over conventional therapy (SMD 0.63, 95% CI 0.34-0.91, I2 = 37%, p = 0.07) and over sham therapy (SMD 0.44, 95% CI 0.20-0.68, I2 = 38%, p = 0.08). Three studies investigated the effect on muscle thickness and found a significant increase in favor of electrostimulation when compared to conventional therapy (MD 0.11 cm, 95% CI 0.06-0.16, I2 = 0%, p = 0.50). CONCLUSION: Current evidence suggests electrotherapy in combination with physiotherapy has positive effects on lower limb muscle strength and skeletal muscle characteristics in patients recovering from stroke.


As stroke is known to cause long term disability, the implementation of strengthening interventions in rehabilitation becomes an indispensable part to optimize recovery.Peripheral electrical stimulation might be a useful intervention since it has the potential to repetitively activate the sensory-motor system via electrical pulses to nerves and muscles of the paretic limb.Results of the meta-analysis indicate a beneficial effect of electrotherapy on muscle strength when compared to conventional and sham therapy, and muscle thickness when compared to conventional therapy.

2.
J Rehabil Med ; 54: jrm00308, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35848335

ABSTRACT

BACKGROUND: Rehabilitation is important in the first months after a stroke for recovery of functional ability, but it is also challenging, since distinct recovery trajectories are seen. Therefore, studying the early changes in muscle characteristics over time (e.g. muscle strength, muscle mass and muscle volume), which are known to be associated with functional abilities, may deepen our understanding of underlying recovery mechanisms of stroke survivors. OBJECTIVE: This systematic review aims to describe the longitudinal changes in skeletal muscles, including muscle strength, muscle mass and muscle volume, during the first 3 months post-stroke. METHODS: Electronic searches were conducted in Medline, Scopus and CENTRAL. Longitudinal cohort studies or controlled interventional trials that report data about patients in the first 3 months after stroke were identified. Skeletal muscle characteristics should be measured at least twice within 3 months post-stroke by objective, quantitative assessment methods (e.g. dynamometry, ultrasound, computed tomography). Effect sizes were calculated as Hedges' g using standardized mean differences. RESULTS: A total of 38 studies (1,097 subjects) were found eligible. Results revealed an mean increase on the paretic side for upper and lower limb muscle strength (small to moderate effect sizes), whereas muscle thickness decreased (moderate to large effect sizes). Similar, but smaller, effects were found on the non-paretic side. There were insufficient data available to draw conclusions about lean muscle mass and muscle cross-sectional area. No studies aimed at investigating distinct trajectories of the muscle changes. CONCLUSION: Muscle strength and thickness changes during the first 3 months after stroke in both the paretic and non-paretic side. Future studies should aim to understand "how" the stroke-induced muscle strength changes are achieved. Exploring existing data from longitudinal studies, by using cluster analyses, such as pattern recognition, could add to the current knowledge-base.


Subject(s)
Muscular Diseases , Stroke Rehabilitation , Stroke , Humans , Longitudinal Studies , Muscle, Skeletal/diagnostic imaging , Paresis/complications , Stroke/complications , Stroke Rehabilitation/methods
3.
Top Stroke Rehabil ; 28(2): 104-111, 2021 03.
Article in English | MEDLINE | ID: mdl-32588773

ABSTRACT

In stroke rehabilitation there is a growing body of evidence that not all patients have the same potential to recover. Understanding the processes that give rise to the heterogeneous treatment responses in stroke survivors will lay foundations for any conceivable advance in future rehabilitation interventions. This review was set out to shine new light on the debate of biomarkers in stroke rehabilitation by linking fundamental insights from biogerontological sciences to neurorehabilitation sciences. In particular, skeletal muscle changes and inflammation are addressed as two potential constructs from which biomarkers for stroke rehabilitation can be derived. Understanding the interplay between these constructs as well as their relation to recovery could enhance stroke rehabilitation in the future. The rationale for the selection of these constructs is three-fold: first, recent stroke literature emphasizes the importance of identifying muscle wasting (also called stroke-induced muscle wasting) in stroke patients, a concept that is widely investigated in geriatrics but less in the stroke population. Second, insights from transdisciplinary research domains such as gerontology have shown that inflammation has severe catabolic effects on muscles, which may impede rehabilitation outcomes such as gait recovery. Last, it has been proven that (high-intensity) muscle strengthening exercises have strong anti-inflammatory effects in a non-stroke population. Therefore, an evidence-based rationale is presented for developing research on individual changes of muscle and inflammation after a stroke.


Subject(s)
Muscle, Skeletal/physiopathology , Recovery of Function/physiology , Stroke Rehabilitation , Stroke/complications , Stroke/physiopathology , Exercise Therapy , Gait , Humans , Stroke/therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...