Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 235: 113765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309153

ABSTRACT

Transmembrane (TM) proteins interact closely with the surrounding membrane lipids. Lipids in the vicinity of TM proteins were reported to have hindered mobility, which has been associated with lipids being caught up in the rough surface of the TM domains. These reports, however, neglect one important factor that largely influences the membrane behavior - electrostatics of the TM peptides that are usually positively charged at their cytosolic end. Here, we study on the example of a neutral and a positively charged WALP peptide, how the charge of a TM peptide influences the membrane. We investigate both its dynamics and mechanics by: (i) time dependent fluorescent shift in combination with classical and FRET generalized polarization to evaluate the mobility of lipids at short and long-range distance from the peptide, (ii) atomic force microscopy to observe the mechanical stability of the peptide-containing membranes, and (iii) molecular dynamics simulations to analyze the peptide-lipid interactions. We show that both TM peptides lower lipid mobility in their closest surroundings. The peptides cause lateral heterogeneity in lipid mobility, which in turn prevents free lipid rearrangement and lowers the membrane ability to seal ruptures after mechanical indentations. Introduction of a positive charge to the peptide largely enhances these effects, affecting the whole membrane. We thus highlight that unspecific peptide-lipid interactions, especially the electrostatics, should not be overlooked as they have a great impact on the mechanics and dynamics of the whole membrane.


Subject(s)
Lipid Bilayers , Peptides , Lipid Bilayers/chemistry , Peptides/chemistry , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Molecular Dynamics Simulation
2.
Biophys Chem ; 304: 107124, 2024 01.
Article in English | MEDLINE | ID: mdl-37951018

ABSTRACT

We employed all-atom MD simulations to investigate the impact of palmitoylation on the PAG transmembrane peptide within various lipid environments, including the less explored boundary region separating lipid-ordered (Lo) and lipid-disordered (Ld) membrane phases. We found that palmitoylation of the peptide reduces its impact on membrane thickness, particularly within the Lo and boundary environments. Despite their hydrophobic nature, the palmitoyl chains on the peptide did not significantly affect the hydration of the surrounding membrane. Interestingly, the boundary membrane environment was found to be especially compatible with the palmitoylated peptide, suggesting its potential for accumulation in phase boundaries. Our findings highlight the importance of understanding how palmitoylation-modified peptides behave within membranes, with crucial implications for cell signaling and membrane organization. This knowledge may also inform the optimization of lipid membrane-based drug delivery systems, by improving our understanding of how drugs and excipients can be most effectively arranged within these carriers.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Lipid Bilayers/chemistry , Lipoylation , Peptides/metabolism
3.
Mol Pharm ; 21(1): 126-136, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38110329

ABSTRACT

This study investigates the interaction of two approved and one newly developed latanoprost formulation with in vitro and in silico models of the tear film and tear film lipid layer (TFLL). Latanoprost, a prostaglandin analogue used for intraocular elevated pressure treatment, is topically delivered by nanocarriers within aqueous solutions or emulsions. The study focuses on the impact of these carriers on drug interactions with the tear film and their effect on the TFLL. Three different types of latanoprost carriers, micellar, nanoemulsion, and polymer-based, were compared, and each revealed distinct interaction patterns with the TFLL. Surface pressure kinetics demonstrated a rapid increase for the benzalkonium chloride formulation and a slow rise for the preservative-free variants. Visualization of the acellular in vitro TFLL model revealed different patterns of incorporation for each formulation, indicating unique interaction mechanisms. Molecular dynamics simulations further revealed different mechanisms of drug release in the TFLL between micellar and nanoemulsion formulations. In-depth examination highlighted the role of triglyceride molecules in replenishing the nonpolar layer of the TFLL, which suggests potential improvements in ocular surface compatibility by adjusting the quality and concentration of the oily phase. These findings suggest the potential for optimizing latanoprost formulations by tuning the oily phase-to-surfactant ratio and selecting suitable surfactants.


Subject(s)
Eye , Glaucoma , Humans , Latanoprost/therapeutic use , Intraocular Pressure , Glaucoma/drug therapy , Drug Delivery Systems , Antihypertensive Agents/therapeutic use
4.
ACS Biomater Sci Eng ; 9(11): 6112-6122, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37909715

ABSTRACT

The solid-aqueous boundary formed upon biomaterial implantation provides a playground for most biochemical reactions and physiological processes involved in implant-host interactions. Therefore, for biomaterial development, optimization, and application, it is essential to understand the biomaterial-water interface in depth. In this study, oxygen plasma-functionalized polyurethane surfaces that can be successfully utilized in contact with the tissue of the respiratory system were prepared and investigated. Through experiments, the influence of plasma treatment on the physicochemical properties of polyurethane was investigated by atomic force microscopy, attenuated total reflection infrared spectroscopy, differential thermal analysis, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and contact angle measurements, supplemented with biological tests using the A549 cell line and two bacteria strains (Staphylococcus aureus and Pseudomonas aeruginosa). The molecular interpretation of the experimental findings was achieved by molecular dynamics simulations employing newly developed, fully atomistic models of unmodified and plasma-functionalized polyurethane materials to characterize the polyurethane-water interfaces at the nanoscale in detail. The experimentally obtained polar and dispersive surface free energies were consistent with the calculated free energies, verifying the adequacy of the developed models. A 20% substitution of the polymeric chain termini by their oxidized variants was observed in the experimentally obtained plasma-modified polyurethane surface, indicating the surface saturation with oxygen-containing functional groups.


Subject(s)
Biocompatible Materials , Polyurethanes , Polyurethanes/chemistry , Surface Properties , Water , Oxygen
5.
Int J Pharm ; 645: 123367, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37666309

ABSTRACT

Glaucoma is a leading cause of blindness worldwide, with elevated intraocular pressure being a major risk factor for its development and progression. First-line treatment for glaucoma relies on the administration of prostaglandin analogs, with latanoprost being the most widely used. However, before latanoprost reaches the cornea, it must pass through the tear film and tear film lipid layer (TFLL) on the ocular surface. Given the significant lipophilicity of latanoprost, we hypothesize that TFLL could, to a certain extent, act as a reservoir for latanoprost, releasing it on longer time scales, apart from the fraction being directly delivered to the cornea in a post-instillation mechanism. We investigated this possibility by studying latanoprost behavior in acellular in vitro TFLL models. Furthermore, we employed in silico molecular dynamics simulations to rationalize the experimental results and obtain molecular-level insight into the latanoprost-TFLL interactions. Our experiments demonstrated that latanoprost indeed accumulates in the TFLL models, and our simulations explain the basis of the accumulation mechanism. These results support the hypothesis that TFLL can serve as a reservoir for latanoprost, facilitating its prolonged release. This finding could have significant implications for optimizing glaucoma treatment, especially in the development of new drug delivery systems targeting the TFLL.


Subject(s)
Glaucoma , Humans , Latanoprost/therapeutic use , Glaucoma/drug therapy , Tears , Cornea , Computer Simulation , Antihypertensive Agents/therapeutic use , Intraocular Pressure
6.
J Phys Chem B ; 127(24): 5462-5469, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37307026

ABSTRACT

Ethylenediaminetetraacetic acid (EDTA) is frequently used in lipid experiments to remove redundant ions, such as Ca2+, from the sample solution. In this work, combining molecular dynamics (MD) simulations and Langmuir monolayer experiments, we show that on top of the expected Ca2+ depletion, EDTA anions themselves bind to phosphatidylcholine (PC) monolayers. This binding, originating from EDTA interaction with choline groups of PC lipids, leads to the adsorption of EDTA anions at the monolayer surface and concentration-dependent changes in surface pressure as measured by monolayer experiments and explained by MD simulations. This surprising observation emphasizes that lipid experiments carried out using EDTA-containing solutions, especially of high concentrations, must be interpreted very carefully due to potential interfering interactions of EDTA with lipids and other biomolecules involved in the experiment, e.g., cationic peptides, that may alter membrane-binding affinities of studied compounds.


Subject(s)
Membranes, Artificial , Phosphatidylcholines , Phosphatidylcholines/chemistry , Edetic Acid , Molecular Dynamics Simulation , Ions
7.
J Phys Chem Lett ; 14(25): 5791-5797, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37327454

ABSTRACT

Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.


Subject(s)
Gangliosides , Sphingomyelins , Gangliosides/chemistry , Glycosphingolipids , G(M1) Ganglioside , Molecular Dynamics Simulation
8.
Eur J Pharm Biopharm ; 186: 65-73, 2023 May.
Article in English | MEDLINE | ID: mdl-36933811

ABSTRACT

Benzalkonium chloride (BAK) compounds are commonly used in topical ophthalmic products as preservatives and stabilizers. BAK mixtures containing several compounds with different alkyl chain lengths are typically used. However, in chronic eye conditions, such as dry eye disease and glaucoma, the accumulation of adverse effects of BAKs was observed. Hence, preservative-free eye drops formulations are preferred. On the other hand, selected long-chain BAKs, particularly cetalkonium chloride, exhibit therapeutic functions, promoting epithelium wound healing and tear film stability. Nevertheless, the mechanism of BAKs influence on the tear film is not fully understood. By employing in vitro experimental and in silico simulation techniques, we elucidate the action of BAKs and demonstrate that long-chain BAKs accumulate in the lipid layer of the tear film model, stabilizing it in a concentration-dependent fashion. In contrast, short-chain BAKs interacting with the lipid layer compromise the tear film model stability. These findings are relevant for topical ophthalmic drug formulation and delivery in the context of selecting proper BAK species and understanding the dose dependency for tear film stability.


Subject(s)
Dry Eye Syndromes , Preservatives, Pharmaceutical , Humans , Preservatives, Pharmaceutical/pharmacology , Benzalkonium Compounds/adverse effects , Tears , Dry Eye Syndromes/drug therapy , Ophthalmic Solutions , Lipids/pharmacology
9.
Langmuir ; 39(12): 4338-4350, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917773

ABSTRACT

The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.


Subject(s)
Pulmonary Surfactants , Biophysical Phenomena , Phospholipids/chemistry , Proteins , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactants/chemistry , Surface Properties , Surface-Active Agents , Pulmonary Surfactant-Associated Protein C/chemistry
10.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628592

ABSTRACT

The ocular surface is in constant interaction with the environment and with numerous pathogens. Therefore, complex mechanisms such as a stable tear film and local immune defense mechanisms are required to protect the eye. This study describes the detection, characterization, and putative role of surfactant protein G (SP-G/SFTA2) with respect to wound healing and surface activity. Bioinformatic, biochemical, and immunological methods were combined to elucidate the role of SP-G in tear film. The results show the presence of SP-G in ocular surface tissues and tear film (TF). Increased expression of SP-G was demonstrated in TF of patients with dry eye disease (DED). Addition of recombinant SP-G in combination with lipids led to an accelerated wound healing of human corneal cells as well as to a reduction of TF surface tension. Molecular modeling of TF suggest that SP-G may regulate tear film surface tension and improve its stability through specific interactions with lipids components of the tear film. In conclusion, SP-G is an ocular surface protein with putative wound healing properties that can also reduce the surface tension of the tear film.


Subject(s)
Dry Eye Syndromes , Tears , Cornea/metabolism , Dry Eye Syndromes/metabolism , Humans , Lipids/analysis , Surface Tension , Tears/metabolism
11.
Biochim Biophys Acta Biomembr ; 1864(4): 183866, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35007517

ABSTRACT

In light of an increasing number of antibiotic-resistant bacterial strains, it is essential to understand an action imposed by various antimicrobial agents on bacteria at the molecular level. One of the leading mechanisms of killing bacteria is related to the alteration of their plasmatic membrane. We study bio-inspired peptides originating from natural antimicrobial proteins colicins, which can disrupt membranes of bacterial cells. Namely, we focus on the α-helix H1 of colicin U, produced by bacterium Shigella boydii, and compare it with analogous peptides derived from two different colicins. To address the behavior of the peptides in biological membranes, we employ a combination of molecular simulations and experiments. We use molecular dynamics simulations to show that all three peptides are stable in model zwitterionic and negatively charged phospholipid membranes. At the molecular level, their embedment leads to the formation of membrane defects, membrane permeation for water, and, for negatively charged lipids, membrane poration. These effects are caused by the presence of polar moieties in the considered peptides. Importantly, simulations demonstrate that even monomeric H1 peptides can form toroidal pores. At the macroscopic level, we employ experimental co-sedimentation and fluorescence leakage assays. We show that the H1 peptide of colicin U incorporates into phospholipid vesicles and disrupts their membranes, causing leakage, in agreement with the molecular simulations. These insights obtained for model systems seem important for understanding the mechanisms of antimicrobial action of natural bacteriocins and for future exploration of small bio-inspired peptides able to disrupt bacterial membranes.


Subject(s)
Colicins/metabolism , Phospholipids/chemistry , Unilamellar Liposomes/metabolism , Amino Acid Sequence , Colicins/chemistry , Colicins/pharmacology , Molecular Dynamics Simulation , Permeability/drug effects , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Protein Conformation, alpha-Helical , Shigella boydii/metabolism , Unilamellar Liposomes/chemistry
12.
J Phys Chem B ; 125(51): 13858-13867, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34914398

ABSTRACT

Excited-state character and dynamics of two 6-(dimethylamino)-2-acylnaphthalene dyes (Prodan and Badan-SCH2CH2OH) were studied by picosecond time-resolved IR spectroscopy (TRIR) in solvents of different polarity and relaxation times: hexane, CD3OD, and glycerol-d8. In all these solvents, near-UV excitation initially produced the same S1(ππ*) excited state characterized by a broad TRIR signal. A very fast decay (3, ∼100 ps) followed in hexane, whereas conversion to a distinct IR spectrum with a ν(C═O) band downshifted by 76 cm-1 occurred in polar/H-bonding solvents, slowing down on going from CD3OD (1, 23 ps) to glycerol-d8 (5.5, 51, 330 ps). The final relaxed excited state was assigned as planar Me2N → C═O intramolecular charge transfer S1(ICT) by comparing experimental and TDDFT-calculated spectra. TRIR conversion kinetics are comparable to those of early stages of multiexponential fluorescence decay and dynamic fluorescence red-shift. This work presents a strong evidence that Prodan-type dyes undergo solvation-driven charge separation in their S1 state, which is responsible for the dynamic fluorescence Stokes shift observed in polar/H-bonding solvents. The time evolution of the optically prepared S1(ππ*) state to the S1(ICT) final state reflects environment relaxation and solvation dynamics. This finding rationalizes the widespread use of Prodan-type dyes as probes of environment dynamics and polarity.


Subject(s)
Fluorescent Dyes , 2-Naphthylamine/analogs & derivatives , Kinetics , Solvents , Spectrum Analysis
13.
J Phys Chem B ; 125(42): 11617-11627, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34661408

ABSTRACT

Halogenated and alkylated BODIPY derivatives are reported as suitable candidates for their use as photosensitizers in photodynamic therapy due to their efficient intersystem crossing (ISC) between states of different spin multiplicities. Spin-orbit couplings (SOCs) are evaluated using an effective one-electron spin-orbit Hamiltonian for brominated and alkylated BODIPY derivatives to investigate the quantitative effect of alkyl and bromine substituents on ISC. BODIPY derivatives containing bromine atoms have been found to have significantly stronger SOCs than alkylated BODIPY derivatives outside the Frank-Condon region while they are nearly the same at local minima. Based on calculated time-dependent density functional theory (TD-DFT) vertical excitation energies and SOCs, excited-state dynamics of three BODIPY derivatives were further explored with TD-DFT surface hopping molecular dynamics employing a simple accelerated approach. Derivatives containing bromine atoms have been found to have very similar lifetimes, which are much shorter than those of the derivatives possessing just the alkyl moieties. However, both bromine atoms and alkyl moieties reduce the HOMO/LUMO gap, thus assisting the derivatives to behave as efficient photosensitizers.


Subject(s)
Halogenation , Photosensitizing Agents , Alkylation , Boron Compounds
14.
FEBS J ; 288(13): 4039-4052, 2021 07.
Article in English | MEDLINE | ID: mdl-33458942

ABSTRACT

Linker for activation in T cells (LAT) is a critical regulator of T-cell development and function. It organises signalling events at the plasma membrane. However, the mechanism, which controls LAT localisation at the plasma membrane, is not fully understood. Here, we studied the impact of helix-breaking amino acids, two prolines and one glycine, in the transmembrane segment on localisation and function of LAT. Using in silico analysis, confocal and super-resolution imaging and flow cytometry, we demonstrate that central proline residue destabilises transmembrane helix by inducing a kink. The helical structure and dynamics are further regulated by glycine and another proline residue in the luminal part of LAT transmembrane domain. Replacement of these residues with aliphatic amino acids reduces LAT dependence on palmitoylation for sorting to the plasma membrane. However, surface expression of these mutants is not sufficient to recover function of nonpalmitoylated LAT in stimulated T cells. These data indicate that geometry and dynamics of LAT transmembrane segment regulate its localisation and function in immune cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Glycine/metabolism , Membrane Proteins/metabolism , Proline/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Calcium/metabolism , Glycine/genetics , Humans , Jurkat Cells , Membrane Proteins/chemistry , Membrane Proteins/genetics , Microscopy, Confocal , Microscopy, Interference , Molecular Dynamics Simulation , Mutation , Proline/genetics , Protein Domains , Protein Structure, Secondary , Sequence Homology, Amino Acid , T-Lymphocytes/metabolism
15.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327408

ABSTRACT

The tear film at the ocular surface is covered by a thin layer of lipids. This oily phase stabilizes the film by decreasing its surface tension and improving its viscoelastic properties. Clinically, destabilization and rupture of the tear film are related to dry eye disease and are accompanied by changes in the quality and quantity of tear film lipids. In dry eye, eye drops containing oil-in-water emulsions are used for the supplementation of lipids and surface-active components to the tear film. We explore in detail the biophysical aspects of interactions of specific surface-active compounds, cetalkonium chloride and poloxamer 188, which are present in oil-in-water emulsions, with tear lipids. The aim is to better understand the macroscopically observed eye drops-tear film interactions by rationalizing them at the molecular level. To this end, we employ a multi-scale approach combining experiments on human meibomian lipid extracts, measurements using synthetic lipid films, and in silico molecular dynamics simulations. By combining these methods, we demonstrate that the studied compounds specifically interact with the tear lipid film enhancing its structure, surfactant properties, and elasticity. The observed effects are cooperative and can be further modulated by material packing at the tear-air interface.


Subject(s)
Lipids/chemistry , Microscopy, Fluorescence/methods , Molecular Dynamics Simulation , Motion Pictures , Fatty Alcohols/chemistry , Humans , Meibomian Glands/metabolism , Models, Theoretical , Poloxamer/chemistry , Quaternary Ammonium Compounds/chemistry
16.
Langmuir ; 36(50): 15258-15269, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33296215

ABSTRACT

Ions at the two sides of the plasma membrane maintain the transmembrane potential, participate in signaling, and affect the properties of the membrane itself. The extracellular leaflet is particularly enriched in phosphatidylcholine lipids and under the influence of Na+, Ca2+, and Cl- ions. In this work, we combined molecular dynamics simulations performed using state-of-the-art models with vibrational sum frequency generation (VSFG) spectroscopy to study the effects of these key ions on the structure of dipalmitoylphosphatidylcholine. We used lipid monolayers as a proxy for membranes, as this approach enabled a direct comparison between simulation and experiment. We find that the effects of Na+ are minor. Ca2+, on the other hand, strongly affects the lipid headgroup conformations and induces a tighter packing of lipids, thus promoting the liquid condensed phase. It does so by binding to both the phosphate and carbonyl oxygens via direct and water-mediated binding modes, the ratios of which depend on the monolayer packing. Clustering analysis performed on simulation data revealed that changes in area per lipid or CaCl2 concentration both affect the headgroup conformations, yet their effects are anticorrelated. Cations at the monolayer surface also attract Cl-, which at large CaCl2 concentrations penetrates deep to the monolayer. This phenomenon coincides with a radical change in the VSFG spectra of the phosphate group, thus indicating the emergence of a new binding mode.

17.
Langmuir ; 36(35): 10438-10447, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32804507

ABSTRACT

Cholesterol renders mammalian cell membranes more compact by reducing the amount of voids in the membrane structure. Because of this, cholesterol is known to regulate the ability of cell membranes to prevent the permeation of water and water-soluble molecules through the membranes. Meanwhile, it is also known that even seemingly tiny modifications in the chemical structure of cholesterol can lead to notable changes in membrane properties. The question is, how significantly do these small changes in cholesterol structure affect the permeability barrier function of cell membranes? In this work, we applied fluorescence methods as well as atomistic molecular dynamics simulations to characterize changes in lipid membrane permeability induced by cholesterol oxidation. The studied 7ß-hydroxycholesterol (7ß-OH-chol) and 27-hydroxycholesterol (27-OH-chol) represent two distinct groups of oxysterols, namely, ring- and tail-oxidized cholesterols, respectively. Our previous research showed that the oxidation of the cholesterol tail has only a marginal effect on the structure of a lipid bilayer; however, oxidation was found to disturb membrane dynamics by introducing a mechanism that allows sterol molecules to move rapidly back and forth across the membrane-bobbing. Herein, we show that bobbing of 27-OH-chol accelerates fluorescence quenching of NBD-lipid probes in the inner leaflet of liposomes by dithionite added to the liposomal suspension. Systematic experiments using fluorescence quenching spectroscopy and microscopy led to the conclusion that the presence of 27-OH-chol increases membrane permeability to the dithionite anion. Atomistic molecular dynamics simulations demonstrated that 27-OH-chol also facilitates water transport across the membrane. The results support the view that oxysterol bobbing gives rise to successive perturbations to the hydrophobic core of the membrane, and these perturbations promote the permeation of water and small water-soluble molecules through a lipid bilayer. The observed impairment of permeability can have important consequences for eukaryotic organisms. The effects described for 27-OH-chol were not observed for 7ß-OH-chol which represents ring-oxidized sterols.

18.
J Ocul Pharmacol Ther ; 36(6): 355-365, 2020.
Article in English | MEDLINE | ID: mdl-32493105

ABSTRACT

Dry eye disease (DED) is a complex multifactorial disease that affects an increasing number of patients worldwide. Close to 30% of the population has experienced dry eye (DE) symptoms and presented with some signs of the disease during their lifetime. The significant heterogeneity in the medical background of patients with DEs and in their sensitivity to symptoms renders a clear understanding of DED complicated. It has become evident over the past few years that DED results from an impairment of the ocular surface homeostasis. Hence, a holistic treatment approach that concomitantly addresses the different mechanisms that result in the destabilization of the tear film (TF) and the ocular surface would be appropriate. The goal of the present review is to compile the different types of scientific evidence (from in silico modeling to clinical trials) that help explain the mechanism of action of cationic emulsion (CE)-based eye drop technology for the treatment of both the signs and the symptoms of DED. These CE-based artificial tear (AT) eye drops designed to mimic, from a functional point of view, a healthy TF contribute to the restoration of a healthy ocular surface environment and TF that leads to a better management of DE patients. The CE-based AT eye drops help restore the ocular surface homeostasis in patients who have unstable TF or no tears.


Subject(s)
Dry Eye Syndromes/drug therapy , Emulsions/chemistry , Lubricant Eye Drops/therapeutic use , Ocular Physiological Phenomena/drug effects , Adult , Emulsions/pharmacology , Healthy Volunteers/statistics & numerical data , Homeostasis , Humans , Lubricant Eye Drops/administration & dosage , Lubricant Eye Drops/chemistry , Surface Properties/drug effects , Tears/physiology
19.
Ocul Surf ; 18(4): 545-553, 2020 10.
Article in English | MEDLINE | ID: mdl-32562857

ABSTRACT

PURPOSE: The tear film lipid layer (TFLL) covers the tear film, stabilizing it and providing a protective barrier against the environment. The TFLL is divided into polar and non-polar sublayers, but the interplay between lipid classes in these sublayers and the structure-function relationship of the TFLL remains poorly characterized. This study aims to provide insight into TFLL function by elucidating the interactions between polar and non-polar TFLL lipids at the molecular level. METHODS: Mixed films of polar O-acyl-ω-hydroxy fatty acids (OAHFA) or phospholipids and non-polar cholesteryl esters (CE) were used as a model of the TFLL. The organization of the films was studied by using a combination of Brewster angle and fluorescence microscopy in a Langmuir trough system. In addition, the evaporation resistance of the lipid films was evaluated. RESULTS: Phospholipids and OAHFAs induced the formation of a stable multilamellar CE film. The formation of this film was driven by the interdigitation of acyl chains between the monolayer of polar lipids and the CE multilayer lamellae. Surprisingly, the multilayer structure was destabilized by both low and high concentrations of polar lipids. In addition, the CE multilayer was no more effective in resisting the evaporation of water than a polar lipid monolayer. CONCLUSIONS: Formation of multilamellar films by major tear film lipids suggest that the TFLL may have a similar structure. Moreover, in contrast to the current understanding, polar TFLL lipids may not mainly act by stabilizing the non-polar TFLL sublayer, but through a direct evaporation resistant effect.


Subject(s)
Tears , Cholesterol Esters , Fatty Acids , Lipids
20.
Biochim Biophys Acta Biomembr ; 1862(9): 183300, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32243884

ABSTRACT

The Tear Film Lipid Layer (TFLL) covering the surface of the aqueous film at human cornea forms a first barrier between the eye and environment. Its alterations are related to dry eye disease. TFLL is formed by a complex mixture of lipids, with an excess of nonpolar components and a minor fraction of polar molecules. Its thickness is up to 160 nm, hence a multilayer-like structure of TFLL is assumed. However, details of TFLL organization are mostly unavailable in vivo due to the dynamic nature of the human tear film. To overcome this issue, we employ a minimalistic in vitro lipid model of TFLL. We study its biophysical characteristics by using a combination of the Langmuir trough with fluorescence microscopy. The model consists of two-component polar-nonpolar lipid films with a varying component ratio spread on the aqueous subphase at physiologically relevant temperature. We demonstrate that the model lipid mixture undergoes substantial structural reorganization as a function of lateral pressure and polar to nonpolar lipid ratio. In particular, the film is one-molecule-thick and homogenous under low lateral pressure. Upon compression, it transforms into a multilayer structure with inhomogeneities in the form of polar-nonpolar lipid assemblies. Based on this model, we hypothesize that TFLL in vivo has a duplex polar-nonpolar structure and it contains numerous mixed lipid aggregates formed because of film restructuring. These findings, despite the simplified character of the model, seem relevant for TFLL physiology as well as for understanding pathological conditions related to the lipids of the tear film.


Subject(s)
Cornea/chemistry , Lipids/chemistry , Tears/chemistry , Water/chemistry , Cornea/metabolism , Humans , Microscopy, Fluorescence , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...