Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36610932

ABSTRACT

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Epitopes/genetics , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Serotherapy , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral , Mice, Transgenic
2.
Womens Health Rep (New Rochelle) ; 3(1): 803-812, 2022.
Article in English | MEDLINE | ID: mdl-36204478

ABSTRACT

Objective: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by a reduction in fertility and metabolic dysfunction. Unfortunately, due to a lack of clear presentation, it is often a long process of diagnosis. In this study, we investigated bile acids as potential biomarkers. Materials and Methods: Subjects were recruited and stratified into groups based on body mass index and PCOS status. Biometric data and plasma were acquired to understand bile acid profiles and related markers. Results: Taurocholic acid (TCA) and taurodeoxycholic acid were elevated in PCOS subjects with obesity in comparison to controls without PCOS. Fibroblast growth factor 21 (FGF-21), a metabolic regulator implemented in bile acid metabolism, was elevated in PCOS patients and was positively correlated with TCA changes. Conclusions: We present evidence suggesting that bile acids may be novel diagnostic targets in obese patients with PCOS while further studies need to delineate the interplay between FGF-21, bile acids, and testosterone in the early detection of PCOS.

3.
iScience ; 25(10): 105038, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36068847

ABSTRACT

Severe outcomes from SARS-CoV-2 infection are highly associated with preexisting comorbid conditions like hypertension, diabetes, and obesity. We utilized the diet-induced obesity (DIO) model of metabolic dysfunction in K18-hACE2 transgenic mice to model obesity as a COVID-19 comorbidity. Female DIO, but not male DIO mice challenged with SARS-CoV-2 were observed to have shortened time to morbidity compared to controls. Increased susceptibility to SARS-CoV-2 in female DIO was associated with increased viral RNA burden and interferon production compared to males. Transcriptomic analysis of the lungs from all mouse cohorts revealed sex- and DIO-associated differential gene expression profiles. Male DIO mice after challenge had decreased expression of antibody-related genes compared to controls, suggesting antibody producing cell localization in the lung. Collectively, this study establishes a preclinical comorbidity model of COVID-19 in mice where we observed sex- and diet-specific responses that begin explaining the effects of obesity and metabolic disease on COVID-19 pathology.

4.
Front Immunol ; 13: 948431, 2022.
Article in English | MEDLINE | ID: mdl-36091051

ABSTRACT

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , Horses , Humans , Immunization, Passive , Melphalan , Mice , Pandemics , SARS-CoV-2/genetics , gamma-Globulins
5.
PLoS One ; 17(8): e0273430, 2022.
Article in English | MEDLINE | ID: mdl-36037222

ABSTRACT

The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.


Subject(s)
COVID-19 , Pneumonia , Animals , Antiviral Agents , COVID-19/genetics , Disease Models, Animal , Humans , Interferons , Melphalan , Mice , Mice, Transgenic , Pandemics , SARS-CoV-2 , gamma-Globulins
6.
mSphere ; 7(4): e0024322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35968964

ABSTRACT

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Alum Compounds , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Emulsions , Hepatitis B Surface Antigens/genetics , Humans , Melphalan , Mice , Mice, Inbred BALB C , Pandemics , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Squalene , Vaccines, Synthetic , Water , gamma-Globulins , mRNA Vaccines
7.
NPJ Vaccines ; 7(1): 36, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288576

ABSTRACT

SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM®). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.

8.
J Virol ; 96(6): e0218421, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35080423

ABSTRACT

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , Disease Models, Animal , Humans , Immunization, Passive , Melphalan , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/immunology , gamma-Globulins , COVID-19 Serotherapy
9.
bioRxiv ; 2021 May 05.
Article in English | MEDLINE | ID: mdl-33972945

ABSTRACT

SARS-CoV-2 variants of concern (VoCs) are impacting responses to the COVID-19 pandemic. Here we present a comparison of the SARS-CoV-2 USA-WA1/2020 (WA-1) strain with B.1.1.7 and B.1.351 VoCs and identify significant differences in viral propagation in vitro and pathogenicity in vivo using K18-hACE2 transgenic mice. Passive immunization with plasma from an early pandemic SARS-CoV-2 patient resulted in significant differences in the outcome of VoC-infected mice. WA-1-infected mice were protected by plasma, B.1.1.7-infected mice were partially protected, and B.1.351-infected mice were not protected. Serological correlates of disease were different between VoC-infected mice, with B.1.351 triggering significantly altered cytokine profiles than other strains. In this study, we defined infectivity and immune responses triggered by VoCs and observed that early 2020 SARS-CoV-2 human immune plasma was insufficient to protect against challenge with B.1.1.7 and B.1.351 in the mouse model.

10.
Diabetes ; 68(2): 337-348, 2019 02.
Article in English | MEDLINE | ID: mdl-30425060

ABSTRACT

The sustained expression of the MAFB transcription factor in human islet ß-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet ß-cell-enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet ß-cell population and that MafB expression is postnatally restricted in mouse ß-cells by de novo DNA methylation. To gain insight into how MAFB affects human ß-cells, we developed a mouse model to ectopically express MafB in adult mouse ß-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse ß-cells, suggesting that the human adult ß-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet ß-cell defects in a mouse mutant lacking MafA in ß-cells. Of note, transgenic production of MafB in ß-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal ß-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet ß-cells.


Subject(s)
Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , MafB Transcription Factor/metabolism , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Chromosomes, Artificial, Bacterial/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Female , Humans , In Vitro Techniques , Maf Transcription Factors, Large/genetics , MafB Transcription Factor/genetics , Mice , Mice, Transgenic , Pregnancy , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
11.
Diabetes ; 65(8): 2331-41, 2016 08.
Article in English | MEDLINE | ID: mdl-27217483

ABSTRACT

ß-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive ß-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal ß-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in ß-cells. In this study, we show that loss of PRLR signaling in ß-cells results in gestational diabetes mellitus (GDM), reduced ß-cell proliferation, and failure to expand ß-cell mass during pregnancy. Targeted PRLR loss in maternal ß-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of ß-cells during pregnancy. MafB deletion in maternal ß-cells also produced GDM, with inadequate ß-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating ß-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal ß-cells during pregnancy.


Subject(s)
Diabetes, Gestational/metabolism , Insulin-Secreting Cells/metabolism , MafB Transcription Factor/metabolism , Receptors, Prolactin/metabolism , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , Cells, Cultured , Cyclin A2/genetics , Cyclin B1/genetics , Cyclin B2/genetics , Cyclin D1/genetics , Cyclin D2/genetics , Diabetes, Gestational/physiopathology , Female , Forkhead Box Protein M1/genetics , Insulin/metabolism , MafB Transcription Factor/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Receptors, Prolactin/genetics , Serotonin/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
12.
J Clin Invest ; 126(5): 1857-70, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27064285

ABSTRACT

Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive ß cell dysfunction. Excess glucose and lipid impair ß cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human ß cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human ß cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and ß cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity.


Subject(s)
Gene Expression Regulation , Homeodomain Proteins/biosynthesis , Insulin-Secreting Cells/metabolism , Islets of Langerhans Transplantation , MafB Transcription Factor/biosynthesis , Animals , Heterografts , Homeodomain Proteins/genetics , Humans , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/transplantation , MafB Transcription Factor/genetics , Mice , Mice, Knockout
13.
Am J Physiol Endocrinol Metab ; 310(1): E91-E102, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26554594

ABSTRACT

Analysis of MafB(-/-) mice has suggested that the MAFB transcription factor was essential to islet α- and ß-cell formation during development, although the postnatal physiological impact could not be studied here because these mutants died due to problems in neural development. Pancreas-wide mutant mice were generated to compare the postnatal significance of MafB (MafB(Δpanc)) and MafA/B (MafAB(Δpanc)) with deficiencies associated with the related ß-cell-enriched MafA mutant (MafA(Δpanc)). Insulin(+) cell production and ß-cell activity were merely delayed in MafB(Δpanc) islets until MafA was comprehensively expressed in this cell population. We propose that MafA compensates for the absence of MafB in MafB(Δpanc) mice, which is supported by the death of MafAB(Δpanc) mice soon after birth from hyperglycemia. However, glucose-induced glucagon secretion was compromised in adult MafB(Δpanc) islet α-cells. Based upon these results, we conclude that MafB is only essential to islet α-cell activity and not ß-cell. Interestingly, a notable difference between mice and humans is that MAFB is coexpressed with MAFA in adult human islet ß-cells. Here, we show that nonhuman primate (NHP) islet α- and ß-cells also produce MAFB, implying that MAFB represents a unique signature and likely important regulator of the primate islet ß-cell.


Subject(s)
Insulin-Secreting Cells/metabolism , Islets of Langerhans/physiology , MafB Transcription Factor/physiology , Adolescent , Adult , Animals , Biomarkers/metabolism , Female , Humans , Macaca mulatta , MafB Transcription Factor/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Primates , Rodentia , Young Adult
14.
Diabetes ; 65(3): 687-98, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26631740

ABSTRACT

Transcription factor expression fluctuates during ß-cell ontogeny, and disruptions in this pattern can affect the development or function of those cells. Here we uncovered that murine endocrine pancreatic progenitors express high levels of the homeodomain transcription factor Prox1, whereas both immature and mature ß-cells scarcely express this protein. We also investigated if sustained Prox1 expression is incompatible with ß-cell development or maintenance using transgenic mouse approaches. We discovered that Prox1 upregulation in mature ß-cells has no functional consequences; in contrast, Prox1 overexpression in immature ß-cells promotes acute fasting hyperglycemia. Using a combination of immunostaining and quantitative and comparative gene expression analyses, we determined that Prox1 upregulation reduces proliferation, impairs maturation, and enables apoptosis in postnatal ß-cells. Also, we uncovered substantial deficiency in ß-cells that overexpress Prox1 of the key regulator of ß-cell maturation MafA, several MafA downstream targets required for glucose-stimulated insulin secretion, and genes encoding important components of FGF signaling. Moreover, knocking down PROX1 in human EndoC-ßH1 ß-cells caused increased expression of many of these same gene products. These and other results in our study indicate that reducing the expression of Prox1 is beneficial for the expansion and maturation of postnatal ß-cells.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation/genetics , Homeodomain Proteins/genetics , Hyperglycemia/genetics , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Maf Transcription Factors, Large/genetics , RNA, Messenger/metabolism , Tumor Suppressor Proteins/genetics , Animals , Animals, Newborn , Cell Line , Chromatin Immunoprecipitation , Computer Simulation , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Gene Knockdown Techniques , Glucose Tolerance Test , Humans , Insulin-Secreting Cells/cytology , Maf Transcription Factors, Large/metabolism , Mice , Mice, Transgenic , Real-Time Polymerase Chain Reaction
15.
Diabetes ; 64(11): 3772-83, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26180087

ABSTRACT

Insulin produced by islet ß-cells plays a critical role in glucose homeostasis, with type 1 and type 2 diabetes both resulting from inactivation and/or loss of this cell population. Islet-enriched transcription factors regulate ß-cell formation and function, yet little is known about the molecules recruited to mediate control. An unbiased in-cell biochemical and mass spectrometry strategy was used to isolate MafA transcription factor-binding proteins. Among the many coregulators identified were all of the subunits of the mixed-lineage leukemia 3 (Mll3) and 4 (Mll4) complexes, with histone 3 lysine 4 methyltransferases strongly associated with gene activation. MafA was bound to the ∼1.5 MDa Mll3 and Mll4 complexes in size-fractionated ß-cell extracts. Likewise, closely related human MAFB, which is important to ß-cell formation and coproduced with MAFA in adult human islet ß-cells, bound MLL3 and MLL4 complexes. Knockdown of NCOA6, a core subunit of these methyltransferases, reduced expression of a subset of MAFA and MAFB target genes in mouse and human ß-cell lines. In contrast, a broader effect on MafA/MafB gene activation was observed in mice lacking NCoA6 in islet ß-cells. We propose that MLL3 and MLL4 are broadly required for controlling MAFA and MAFB transactivation during development and postnatally.


Subject(s)
DNA-Binding Proteins/metabolism , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , MafB Transcription Factor/metabolism , Animals , Cell Line , Histone-Lysine N-Methyltransferase , Humans , Mice , Nuclear Receptor Coactivators/metabolism , RNA, Small Interfering
16.
PLoS One ; 9(4): e94996, 2014.
Article in English | MEDLINE | ID: mdl-24733293

ABSTRACT

Previous studies have shown that whole body deletion of the glucagon receptor suppresses the ability of starvation to increase hepatic fibroblast growth factor 21 (FGF21) expression and plasma FGF21 concentration. Here, we investigate the mechanism by which glucagon receptor activation increases hepatic FGF21 production. Incubating primary rat hepatocyte cultures with glucagon, dibutyryl cAMP or forskolin stimulated a 3-4-fold increase in FGF21 secretion. The effect of these agents on FGF21 secretion was not associated with an increase in FGF21 mRNA abundance. Glucagon induction of FGF21 secretion was additive with the stimulatory effect of a PPARα activator (GW7647) on FGF21 secretion. Inhibition of protein kinase A (PKA) and downstream components of the PKA pathway [i.e. AMP-activated protein kinase and p38 MAPK] suppressed glucagon activation of FGF21 secretion. Incubating hepatocytes with an exchange protein directly activated by cAMP (EPAC)-selective cAMP analog [i.e. 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME)], stimulated a 3.9-fold increase FGF21 secretion, whereas inhibition of the EPAC effector, Rap1, suppressed glucagon activation of FGF21 secretion. Treatment of hepatocytes with insulin also increased FGF21 secretion. In contrast to glucagon, insulin activation of FGF21 secretion was associated with an increase in FGF21 mRNA abundance. Glucagon synergistically interacted with insulin to stimulate a further increase in FGF21 secretion and FGF21 mRNA abundance. These results demonstrate that glucagon increases hepatic FGF21 secretion via a posttranscriptional mechanism and provide evidence that both the PKA branch and EPAC branch of the cAMP pathway play a role in mediating this effect. These results also identify a novel synergistic interaction between glucagon and insulin in the regulation of FGF21 secretion and FGF21 mRNA abundance. We propose that this insulin/glucagon synergism plays a role in mediating the elevation in FGF21 production during starvation and conditions related to metabolic syndrome.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Fibroblast Growth Factors/metabolism , Glucagon/pharmacology , Guanine Nucleotide Exchange Factors/metabolism , Liver/metabolism , Transcription, Genetic/drug effects , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Animals , Bucladesine/metabolism , Colforsin/pharmacology , Fibroblast Growth Factors/genetics , Hep G2 Cells , Humans , Insulin/pharmacology , Liver/drug effects , Male , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , rap1 GTP-Binding Proteins/metabolism
17.
J Biol Chem ; 287(30): 25123-38, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22661717

ABSTRACT

Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.


Subject(s)
Fibroblast Growth Factors/biosynthesis , Gene Expression Regulation/physiology , Hepatocytes/metabolism , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Response Elements/physiology , Animals , Bile Acids and Salts/genetics , Bile Acids and Salts/metabolism , Cells, Cultured , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Male , Mice , Mice, Knockout , PPAR alpha/genetics , PPAR alpha/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction/physiology , Transcription, Genetic/physiology
18.
J Nutr ; 141(2): 171-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21169224

ABSTRACT

Primary hepatocytes treated with nonesterified PUFA have been used as a model for analyzing the inhibitory effects of dietary polyunsaturated fats on lipogenic gene expression. Although nonesterified fatty acids play an important signaling role in starvation, they do not completely recapitulate the mechanism of dietary fat presentation to the liver, which is delivered via chylomicron remnants. To test the effect of remnant TG on lipogenic enzyme expression, chylomicron remnants were generated from the lymph of rats intubated with either safflower oil or lard. The remnants were added to the medium of primary rat hepatocytes in culture and the accumulation of mRNA for genes involved in carbohydrate and lipid metabolism was measured. Both PUFA-enriched remnants and nonesterified PUFA inhibited the expression and maturation of sterol response element binding protein-1c (SREBP-1c) and the expression of lipogenic genes regulated by this transcription factor. These remnants also inhibited the expression of glucose-6-phosphate dehydrogenase (G6PD), a gene regulated at post-transcriptional steps. In contrast, PUFA-enriched remnants did not inhibit the accumulation of mRNA for malic enzyme, glucokinase, and L-pyruvate kinase, whereas nonesterified fatty acids caused a decrease in these mRNA. These genes are regulated independently of SREBP-1c. SFA-enriched remnants did not inhibit lipogenic gene expression, which is consistent with a lack of inhibition of lipogenesis by dietary saturated fats. Thus, the inhibitory action of dietary polyunsaturated fats on lipogenesis involves a direct action of chylomicron remnants on the liver.


Subject(s)
Chylomicron Remnants/pharmacology , Dietary Fats/administration & dosage , Fatty Acids, Nonesterified/pharmacology , Fatty Acids, Unsaturated/pharmacology , Gene Expression/drug effects , Hepatocytes/drug effects , Lipogenesis/drug effects , Animals , Chylomicron Remnants/metabolism , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Fatty Acids/pharmacology , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation/drug effects , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Hepatocytes/metabolism , Lipogenesis/genetics , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...