Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Oncog ; 29(3): 67-82, 2024.
Article in English | MEDLINE | ID: mdl-38683154

ABSTRACT

Given the radiobiological and physical properties of the proton, proton beam therapy has the potential to be advantageous for many patients compared with conventional radiotherapy by limiting toxicity and improving patient outcomes in specific breast cancer scenarios.


Subject(s)
Breast Neoplasms , Proton Therapy , Humans , Breast Neoplasms/radiotherapy , Proton Therapy/methods , Female , Protons
2.
Radiat Oncol ; 19(1): 13, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263237

ABSTRACT

BACKGROUND: To assess the feasibility of CBCT-based adaptive intensity modulated proton therapy (IMPT) using automated planning for treatment of head and neck (HN) cancers. METHODS: Twenty HN cancer patients who received radiotherapy and had pretreatment CBCTs were included in this study. Initial IMPT plans were created using automated planning software for all patients. Synthetic CTs (sCT) were then created by deforming the planning CT (pCT) to the pretreatment CBCTs. To assess dose calculation accuracy on sCTs, repeat CTs (rCTs) were deformed to the pretreatment CBCT obtained on the same day to create deformed rCT (rCTdef), serving as gold standard. The dose recalculated on sCT and on rCTdef were compared by using Gamma analysis. The accuracy of DIR generated contours was also assessed. To explore the potential benefits of adaptive IMPT, two sets of plans were created for each patient, a non-adapted IMPT plan and an adapted IMPT plan calculated on weekly sCT images. The weekly doses for non-adaptive and adaptive IMPT plans were accumulated on the pCT, and the accumulated dosimetric parameters of two sets were compared. RESULTS: Gamma analysis of the dose recalculated on sCT and rCTdef resulted in a passing rate of 97.9% ± 1.7% using 3 mm/3% criteria. With the physician-corrected contours on the sCT, the dose deviation range of using sCT to estimate mean dose for the most organ at risk (OARs) can be reduced to (- 2.37%, 2.19%) as compared to rCTdef, while for V95 of primary or secondary CTVs, the deviation can be controlled within (- 1.09%, 0.29%). Comparison of the accumulated doses from the adaptive planning against the non-adaptive plans reduced mean dose to constrictors (- 1.42 Gy ± 2.79 Gy) and larynx (- 2.58 Gy ± 3.09 Gy). The reductions result in statistically significant reductions in the normal tissue complication probability (NTCP) of larynx edema by 7.52% ± 13.59%. 4.5% of primary CTVs, 4.1% of secondary CTVs, and 26.8% tertiary CTVs didn't meet the V95 > 95% constraint on non-adapted IMPT plans. All adaptive plans were able to meet the coverage constraint. CONCLUSION: sCTs can be a useful tool for accurate proton dose calculation. Adaptive IMPT resulted in better CTV coverage, OAR sparing and lower NTCP for some OARs as compared with non-adaptive IMPT.


Subject(s)
Blood Coagulation Disorders , Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Protons , Cone-Beam Computed Tomography
3.
Front Oncol ; 11: 737901, 2021.
Article in English | MEDLINE | ID: mdl-34737954

ABSTRACT

PURPOSE: To assess the performance of a proton-specific knowledge-based planning (KBP) model in the creation of robustly optimized intensity-modulated proton therapy (IMPT) plans for treatment of advanced head and neck (HN) cancer patients. METHODS: Seventy-three patients diagnosed with advanced HN cancer previously treated with volumetric modulated arc therapy (VMAT) were selected and replanned with robustly optimized IMPT. A proton-specific KBP model, RapidPlanPT (RPP), was generated using 53 patients (20 unilateral cases and 33 bilateral cases). The remaining 20 patients (10 unilateral and 10 bilateral cases) were used for model validation. The model was validated by comparing the target coverage and organ at risk (OAR) sparing in the RPP-generated IMPT plans with those in the expert plans. To account for the robustness of the plan, all uncertainty scenarios were included in the analysis. RESULTS: All the RPP plans generated were clinically acceptable. For unilateral cases, RPP plans had higher CTV_primary V100 (1.59% ± 1.24%) but higher homogeneity index (HI) (0.7 ± 0.73) than had the expert plans. In addition, the RPP plans had better ipsilateral cochlea Dmean (-5.76 ± 6.11 Gy), with marginal to no significant difference between RPP plans and expert plans for all other OAR dosimetric indices. For the bilateral cases, the V100 for all clinical target volumes (CTVs) was higher for the RPP plans than for the expert plans, especially the CTV_primary V100 (5.08% ± 3.02%), with no significant difference in the HI. With respect to OAR sparing, RPP plans had a lower spinal cord Dmax (-5.74 ± 5.72 Gy), lower cochlea Dmean (left, -6.05 ± 4.33 Gy; right, -4.84 ± 4.66 Gy), lower left and right parotid V20Gy (left, -6.45% ± 5.32%; right, -6.92% ± 3.45%), and a lower integral dose (-0.19 ± 0.19 Gy). However, RPP plans increased the Dmax in the body outside of CTV (body-CTV) (1.2 ± 1.43 Gy), indicating a slightly higher hotspot produced by the RPP plans. CONCLUSION: IMPT plans generated by a broad-scope RPP model have a quality that is, at minimum, comparable with, and at times superior to, that of the expert plans. The RPP plans demonstrated a greater robustness for CTV coverage and better sparing for several OARs.

4.
Int J Part Ther ; 8(2): 62-72, 2021.
Article in English | MEDLINE | ID: mdl-34722812

ABSTRACT

PURPOSE: To assess the performance of a proton-specific knowledge based planning (KBPP) model in creation of robustly optimized intensity-modulated proton therapy (IMPT) plans for treatment of patients with prostate cancer. MATERIALS AND METHODS: Forty-five patients with localized prostate cancer, who had previously been treated with volumetric modulated arc therapy, were selected and replanned with robustly optimized IMPT. A KBPP model was generated from the results of 30 of the patients, and the remaining 15 patient results were used for validation. The KBPP model quality and accuracy were evaluated with the model-provided organ-at-risk regression plots and metrics. The KBPP quality was also assessed through comparison of expert and KBPP-generated IMPT plans for target coverage and organ-at-risk sparing. RESULTS: The resulting R 2 (mean ± SD, 0.87 ± 0.07) between dosimetric and geometric features, as well as the χ2 test (1.17 ± 0.07) between the original and estimated data, showed the model had good quality. All the KBPP plans were clinically acceptable. Compared with the expert plans, the KBPP plans had marginally higher dose-volume indices for the rectum V65Gy (0.8% ± 2.94%), but delivered a lower dose to the bladder (-1.06% ± 2.9% for bladder V65Gy). In addition, KBPP plans achieved lower hotspot (-0.67Gy ± 2.17Gy) and lower integral dose (-0.09Gy ± 0.3Gy) than the expert plans did. Moreover, the KBPP generated better plans that demonstrated slightly greater clinical target volume V95 (0.1% ± 0.68%) and lower homogeneity index (-1.13 ± 2.34). CONCLUSIONS: The results demonstrated that robustly optimized IMPT plans created by the KBPP model are of high quality and are comparable to expert plans. Furthermore, the KBPP model can generate more-robust and more-homogenous plans compared with those of expert plans. More studies need to be done for the validation of the proton KBPP model at more-complicated treatment sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...