Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37974230

ABSTRACT

BACKGROUND: Compelling evidence supports the role of childhood traumatization in the etiology of psychiatric disorders, including adult attention-deficit hyperactivity disorder (aADHD) and borderline personality disorder (BPD). The aim of this study was to examine the psychometric properties of the Hungarian version of the Childhood Trauma Questionnaire Short Form (H-CTQ-SF) and to investigate the differences between patients diagnosed with aADHD and BPD in terms of early traumatization. METHODS: Altogether 765 (mean age = 32.8 years, 67.7% women) patients and control subjects were enrolled from different areas of Hungary. Principal component analysis and confirmatory factor analysis were carried out to explore the factor structure of H-CTQ-SF and test the validity of the five-factor structure. Discriminative validity was assessed by comparing clinical and non-clinical samples. Subsequently, aADHD and BPD subgroups were compared with healthy controls to test for the role of early trauma in aADHD without comorbid BPD. Convergent validity was explored by measuring correlations with subscales of the Personality Inventory for DSM-5 (PID-5). RESULTS: The five scales of the H-CTQ-SF demonstrated adequate internal consistency and reliability values. The five-factor model fitted the Hungarian version well after exclusion of one item from the physical neglect scale because of its cross-loading onto the emotional neglect subscale. The H-CTQ-SF effectively differentiated between the clinical and non-clinical samples. The BPD, but not the aADHD group showed significant differences in each CTQ domain compared with the healthy control group. All CTQ domains, except for physical abuse, demonstrated medium to high correlations with PID-5 emotional lability, anxiousness, separation insecurity, withdrawal, intimacy avoidance, anhedonia, depressivity, suspiciousness, and hostility subscales. CONCLUSIONS: Our study confirmed the psychometric properties of the H-CTQ-SF, an easy-to-administer, non-invasive, ethically sound questionnaire. In aADHD patients without comorbid BPD, low levels of traumatization in every CTQ domain were comparable to those of healthy control individuals. Thus, the increased level of traumatization found in previous studies of aADHD might be associated with the presence of comorbid BPD. Our findings also support the role of emotional neglect, emotional abuse and sexual abuse in the development of BPD.

2.
Front Mol Neurosci ; 16: 1173212, 2023.
Article in English | MEDLINE | ID: mdl-37881368

ABSTRACT

Introduction: Circulating microRNAs are promising biomarkers for multiple sclerosis (MS). Our aim was to correlate serum microRNA levels with various magnetic resonance imaging (MRI) parameters. Methods: We recruited 50 MS patients and measured cervical spine and cerebral white matter lesions together with regional brain volumes. Microstructural changes in the white matter were investigated with diffusion tensor imaging. Magnetic resonance spectroscopy was performed to measure cerebral metabolites. Functional connectivity within the default mode network was examined with resting-state functional MRI. On the day of the MRI measurements, we collected serum samples and carried out quantitative analysis of ten pre-selected microRNAs using droplet digital PCR. Results: Serum level of miR-143.3p could differentiate between MS subtypes and had lower levels in progressive MS types. We found significant associations between microRNA levels and MRI measures: (1) higher miR-92a.3p and miR-486.5p levels were associated with greater total white matter lesion volumes within the cervical spine, (2) decreased miR-142.5p levels was associated with reduced total creatinine concentration and (3) miR-92a.3p, miR-142.5p and miR-486.5p levels were associated with functional connectivity strengths between specific nodes of the default mode network. Specifically, we found a negative association between miR-92a.3p and miR-486.5p levels and connectivity strength between the lateral temporal cortex and posterior inferior parietal lobule, and a positive association between miR-142.5p level and connectivity strength between the retrosplenial cortex and temporal pole. However, miRNA levels were not associated with regional brain volumes. Conclusion: We provide here further evidence that circulating microRNAs may show correlation with both structural and functional neuroimaging outcomes in patients with MS.

3.
Front Immunol ; 14: 1182278, 2023.
Article in English | MEDLINE | ID: mdl-37234175

ABSTRACT

Objective: Despite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis. Methods: Wild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted. Results: In the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1ß, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles. Conclusion: Our findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1ß axis with the involvement of both immune cells and fibroblast-like synoviocytes.


Subject(s)
Arthritis, Experimental , Superoxides , Animals , Mice , Peroxidase/adverse effects , Mice, Inbred C57BL , Inflammation
4.
Front Behav Neurosci ; 16: 885849, 2022.
Article in English | MEDLINE | ID: mdl-35600987

ABSTRACT

Exposure to severe, uncontrollable and long-lasting stress is a strong risk factor for the development of numerous mental and somatic disorders. Animal studies document that chronic stress can alter neuronal morphology and functioning in limbic brain structures such as the prefrontal cortex. Mitochondria are intracellular powerhouses generating chemical energy for biochemical reactions of the cell. Recent findings document that chronic stress can lead to changes in mitochondrial function and metabolism. Here, we studied putative mitochondrial damage in response to chronic stress in neurons of the medial prefrontal cortex. We performed a systematic quantitative ultrastructural analysis to examine the consequences of 9-weeks of chronic mild stress on mitochondria number and morphology in the infralimbic cortex of adult male rats. In this preliminary study, we analyzed 4,250 electron microscopic images and 67000 mitochondria were counted and examined in the brains of 4 control and 4 stressed rats. We found significantly reduced number of mitochondria in the infralimbic cortex of the stressed animals, but we could not detect any significant alteration in mitochondrial morphology. These data support the concept that prolonged stress can lead to mitochondrial loss. This in turn may result in impaired energy production. Reduced cellular energy may sensitize the neurons to additional injuries and may eventually trigger the development of psychopathologies.

5.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119279, 2022 09.
Article in English | MEDLINE | ID: mdl-35526721

ABSTRACT

Mossy cells (MCs) are glutamatergic cells of the dentate gyrus with an important role in temporal lobe epilepsy. Under physiological conditions MCs can control both network excitations via direct synapses to granule cells and inhibition via connections to GABAergic interneurons innervating granule cells. In temporal lobe epilepsy mossy cell loss is one of the major hallmarks, but whether the surviving MCs drive or inhibit seizure initiation and generalization is still a debate. The aim of the present review is to summarize the latest findings on the role of mossy cells in healthy and overexcited hippocampus.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Hippocampus , Humans , Mossy Fibers, Hippocampal/physiology , Seizures
6.
Cells ; 11(5)2022 02 24.
Article in English | MEDLINE | ID: mdl-35269413

ABSTRACT

Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund's adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.


Subject(s)
Arthritis, Experimental , Tumor Necrosis Factor-alpha , Animals , Cytokines/metabolism , Doublecortin Protein , Freund's Adjuvant , Hippocampus/metabolism , Inflammation , Interleukin-4 , Interleukin-6 , Male , Mice , Neurogenesis/physiology
7.
Br J Pharmacol ; 179(6): 1146-1186, 2022 03.
Article in English | MEDLINE | ID: mdl-34822719

ABSTRACT

Major depressive disorder is a leading cause of disability worldwide. Because conventional therapies are ineffective in many patients, novel strategies are needed to overcome treatment-resistant depression (TRD). Limiting factors of successful drug development in the last decades were the lack of (1) knowledge of pathophysiology, (2) translational animal models and (3) objective diagnostic biomarkers. Here, we review novel drug targets and drug candidates currently investigated in Phase I-III clinical trials. The most promising approaches are inhibition of glutamatergic neurotransmission by NMDA and mGlu5 receptor antagonists, modulation of the opioidergic system by κ receptor antagonists, and hallucinogenic tryptamine derivates. The only registered drug for TRD is the NMDA receptor antagonist, S-ketamine, but add-on therapies with second-generation antipsychotics, certain nutritive, anti-inflammatory and neuroprotective agents seem to be effective. Currently, there is an intense research focus on large-scale, high-throughput omics and neuroimaging studies. These results might provide new insights into molecular mechanisms and potential novel therapeutic strategies.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Drug Development , Humans
8.
Neurobiol Stress ; 15: 100399, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34646916

ABSTRACT

IMPORTANCE AND OBJECTIVES: Childhood adversity is a strong risk factor for the development of various psychopathologies including major depressive disorder (MDD). However, not all depressed patients experience early life trauma. Functional magnetic resonance imaging (fMRI) studies using facial emotion processing tasks have documented altered blood-oxygen-level-dependent (BOLD) responses in specific cortico-limbic networks both in MDD patients and in individuals with a history of childhood maltreatment (CM). Therefore, a history of maltreatment may represent a key modulating factor responsible for the altered processing of socio-affective stimuli. To test this hypothesis, we recruited MDD patients with and without of maltreatment history to study the long-term consequences of childhood trauma and examined the impact of CM on brain activity using a facial emotion recognition fMRI task. METHODS: MDD patients with childhood maltreatment (MDD + CM, n = 21), MDD patients without maltreatment (MDD, n = 19), and healthy controls (n = 21) matched for age, sex and intelligence quotient underwent fMRI while performing a block design facial emotion matching task with images portraying negative emotions (fear, anger and sadness). The history of maltreatment was assessed with the 28-item Childhood Trauma Questionnaire. RESULTS: Both MDD and MDD + CM patients displayed impaired accuracy to recognize sad faces. Analysis of brain activity revealed that MDD + CM patients had significantly reduced negative BOLD signals in their right accumbens, subcallosal cortex, and anterior paracingulate gyrus compared to controls. Furthermore, MDD + CM patients had a significantly increased negative BOLD response in their right precentral and postcentral gyri compared to controls. We found little difference between MDD and MDD + CM patients, except that MDD + CM patients had reduced negative BOLD response in their anterior paracingulate gyrus relative to the MDD group. CONCLUSIONS: Our present data provide evidence that depressed patients with a history of maltreatment are impaired in facial emotion recognition and that they display altered functioning of key reward-related fronto-striatal circuits during a facial emotion matching task.

9.
Psychiatr Hung ; 36(1): 26-39, 2021.
Article in Hungarian | MEDLINE | ID: mdl-33686013

ABSTRACT

BACKGROUND: Detection of childhood traumas is important both in clinical practice and in research. There is a pressing need for methods that are relatively simple but comprehensive, non-intrusive, and possess adequate psyc - ho metric properties. In this study we translated one of the most widely used and well-studied measure of childhood abuse and neglect and explored the psychometrical properties of this questionnaire. METHODS: The study was based on data from a clinical (N=171) and a normative (N=358) sample. In total 529 adults participated in the testing process. Beside the trauma questionnaire Parental Bonding Inventory, Impact of Events Scale and Dissociative Experiences Scale were administered. RESULTS: We examined the internal consistency of the translated trauma questionnaire. The Cronbach's a coefficients for the five subscales ranged from 0,639 to 0,934. Participants in the clinical sample reached higher scores on all trauma subscales except sexual abuse, than normative adults [PA: t (398)=-2,771; p=0,006; PN: t (398)=-5,990; p=0,000; EA: t (398)=-3,679; p=0,000; EN: t (398)=-4,759; p=0,000; total score: t (398)=-4,669; p=0,000]. Correlations among the trauma questionnaire total score and the scales of Parental Bonding Inventory indicating some medium effects (with maternal care: r=-0,661; p=0,000; with paternal care: r=-0,483; p=0,000). CONCLUSION: Our preliminary findings suggest that this trauma questionnaire is practical and facilitates the systema - tic evaluation of adverse early life events and maximizes the possibility of detecting childhood abuse and neglect.


Subject(s)
Child Abuse/diagnosis , Psychological Trauma/diagnosis , Psychometrics , Surveys and Questionnaires , Adult , Adverse Childhood Experiences/psychology , Child , Child Abuse/psychology , Humans , Hungary , Language , Parent-Child Relations , Parents/psychology , Pilot Projects , Psychological Trauma/psychology
10.
Article in English | MEDLINE | ID: mdl-32735913

ABSTRACT

Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Disease Models, Animal , Animals , Biomarkers/metabolism , Depressive Disorder, Major/metabolism , Humans , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , gamma-Aminobutyric Acid/metabolism
11.
Front Psychol ; 11: 1583, 2020.
Article in English | MEDLINE | ID: mdl-32760326

ABSTRACT

Patients with borderline personality disorder (BPD) experience interpersonal dysfunctions; therefore, it is important to understand their social functioning and the confounding factors. We aimed to investigate the mentalizing abilities and executive functioning (EF) of BPD patients and healthy subjects and to determine the relative importance of BPD diagnosis and EF in predicting mentalizing abilities while controlling for general IQ and comorbid symptom severity. Self-oriented mentalizing (operationalized as emotional self-awareness/alexithymia), other-oriented mentalizing [defined as theory of mind (ToM)], and several EF domains were examined in 18 patients with BPD and 18 healthy individuals. Decoding and reasoning subprocesses of ToM were assessed by standard tasks (Reading the Mind in the Eyes Test and Faux Pas Test, respectively). Relative to controls, BPD patients exhibited significant impairments in emotional self-awareness and ToM reasoning; however, their ToM decoding did not differ. Multivariate regression analyses revealed that comorbid psychiatric symptoms were negative predictors of alexithymia and ToM decoding. Remarkably, the diagnosis of BPD was a positive predictor of ToM decoding but negatively influenced reasoning. Moreover, EF had no impact on alexithymia, while better IQ, and EF predicted superior ToM reasoning. Despite the small sample size, our results provide evidence that there is a dissociation between mental state decoding and reasoning in BPD. Comorbid psychiatric symptoms could be considered as significant negative confounds of self-awareness and ToM decoding in BPD patients. Conversely, the impairment of ToM reasoning was closely related to the diagnosis of BPD itself but not to the severity of the psychopathology.

12.
Front Neurosci ; 14: 474, 2020.
Article in English | MEDLINE | ID: mdl-32581670

ABSTRACT

Background: Stress-induced cellular changes in limbic brain structures contribute to the development of various psychopathologies. In vivo detection of these microstructural changes may help us to develop objective biomarkers for psychiatric disorders. Diffusion tensor imaging (DTI) is an advanced neuroimaging technique that enables the non-invasive examination of white matter integrity and provides insights into the microstructure of pathways connecting brain areas. Objective: Our aim was to examine the temporal dynamics of stress-induced structural changes with repeated in vivo DTI scans and correlate them with behavioral alterations. Methods: Out of 32 young adult male rats, 16 were exposed to daily immobilization stress for 3 weeks. Four DTI measurements were done: one before the stress exposure (baseline), two scans during the stress (acute and chronic phases), and a last one 2 weeks after the end of the stress protocol (recovery). We used a 4.7T small-animal MRI system and examined 18 gray and white matter structures calculating the following parameters: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). T2-weighted images were used for volumetry. Cognitive performance and anxiety levels of the animals were assessed in the Morris water maze, novel object recognition, open field, and elevated plus maze tests. Results: Reduced FA and increased MD and RD values were found in the corpus callosum and external capsule of stressed rats. Stress increased RD in the anterior commissure and reduced MD and RD in the amygdala. We observed time-dependent changes in several DTI parameters as the rats matured, but we found no evidence of stress-induced volumetric alterations in the brains. Stressed rats displayed cognitive impairments and we found numerous correlations between the cognitive performance of the animals and between various DTI metrics of the inferior colliculus, corpus callosum, anterior commissure, and amygdala. Conclusions: Our data provide further support to the translational value of DTI studies and suggest that chronic stress exposure results in similar white matter microstructural alterations that have been documented in stress-related psychiatric disorders. These DTI findings imply microstructural abnormalities in the brain, which may underlie the cognitive deficits that are often present in stress-related mental disorders.

13.
Cells ; 9(4)2020 04 21.
Article in English | MEDLINE | ID: mdl-32326205

ABSTRACT

Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.


Subject(s)
Brain/metabolism , Brain/pathology , Depression/etiology , Depression/psychology , Stress, Psychological/complications , Animals , Brain/diagnostic imaging , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Molecules ; 24(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835699

ABSTRACT

The augmenting acceptance and application of herbal medicine in prevention and treatment of diseases also involve the use of plant essential oils (EOs) through different routes of administration (aromatherapy). Scientific data supporting the efficacy of certain herbal products are continuously growing; however, the cumulative evidence is not always sufficient. The anti-inflammatory properties of EOs have been investigated more extensively and also reviewed in different settings, but so far, our review is the first to summarize the immune-supporting properties of EOs. Our aim here is to synthesize the currently available data on the immune function enhancing effects of EOs. An online search was conducted in the PubMed database, which was terminated at the end of July 2019. Other articles were found in the reference lists of the preselected papers. Studies that applied whole EOs with known components, or single EO constituents under in vitro or in vivo laboratory conditions, or in human studies, and de facto measured parameters related to immune function as outcome measures were included. Two specific fields, EO dietary supplementation for livestock and fish, and forest bathing are also explored. Some EOs, particularly eucalyptus and ginger, seem to have immune function enhancing properties in multiple studies.


Subject(s)
Adaptive Immunity/drug effects , Immunity, Innate/drug effects , Oils, Volatile/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Aromatherapy , Humans , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology
15.
Front Psychol ; 10: 1798, 2019.
Article in English | MEDLINE | ID: mdl-31447737

ABSTRACT

BACKGROUND: Early childhood adversity is a strong predictor of the development of major depressive disorder (MDD), but not all depressed patients experience early life stress (ELS). Cardio-metabolic diseases and cognitive deficits often coincide in MDD and worsen its course and outcome. Adverse childhood experiences have been associated with elevated risk for cardiovascular disease (CVD), but little is known on the impact of ELS on cardiovascular risk factors in MDD. Here, we examined MDD patients with and without ELS to explore the effects of ELS on serum lipid and lipoprotein levels and on cognitive performances of the patients. METHODS: Participants with a mean age of 35 years (18-55 years) were recruited from the university mental health clinic and general community. Three groups, matched in age, gender and lifestyle were examined: MDD patients with ELS (n = 21), MDD patients without ELS (n = 21), and healthy controls (n = 20). The following CVD risk factors were assessed: serum lipids (total cholesterol, triglycerides, high- and low-density lipoproteins), body mass index and exercise in a typical week. MDD severity was measured by the Beck Depression Inventory. Childhood Trauma Questionnaire was used to assess early life adversities. Executive functions and attentional processes were assessed by the Wisconsin Card Sorting and Conners' Continuous Performance tests. RESULTS: Major depressive disorder patients with ELS had higher serum triglyceride and lower HDL-cholesterol concentrations compared to MDD patients without ELS. Linear regression analysis revealed that the severity of ELS had a significant negative association with HDL-cholesterol levels and significant positive associations with the serum levels of TG and TC/HDL-cholesterol index. We also found significant associations between some specific trauma types and lipid profiles. Finally, we could detect significant associations between depression severity and specific domains of the cognitive tests as well as between lipid profiles and certain domains of the Wisconsin Card Sorting Test. However, we could not detect any association between the severity of ELS and cognitive performance. CONCLUSION: After controlling for depressive symptom severity and lifestyle variables, ELS was found to be a strong predictor of serum lipid alterations. Several, inter-correlated pathways may mediate the undesirable effects of ELS on the course and outcome of MDD.

16.
Front Psychiatry ; 10: 867, 2019.
Article in English | MEDLINE | ID: mdl-31920739

ABSTRACT

Background: Patients with major depressive disorder (MDD) have various theory of mind (ToM) impairments which often predict a poor outcome. However, findings on ToM deficits in MDD are inconsistent and suggest the role of moderating factors. Child abuse and neglect are strong predictors of adult MDD and are often associated with a poorer clinical course trajectory. Objective: Because early-life adversities result in various forms of ToM deficits in clinical and nonclinical samples, our aim was to investigate if they are significant confounding factors of ToM impairments in MDD. Methods: We investigated 60 mildly or moderately depressed, nonpsychotic adult patients with MDD during an acute episode, and 32 matched healthy controls. The mental state decoding subdomain of ToM was examined with the Reading the Mind in the Eyes Test (RMET). Childhood adversities were assessed with the childhood trauma questionnaire (CTQ) and the early trauma inventory. Results: There was no difference between the control and MDD groups in RMET performance. However, when we divided the MDD group into two subgroups, one (N = 30) with high and the other (N = 30) with low levels of childhood adversities, a significant difference emerged between the controls and the highly maltreated MDD subgroup in RMET performance. A series of 3 (group) × 3 (valence) mixed-model analyses of covariance (ANCOVAs) revealed that childhood emotional and physical neglect had a significant negative impact on the response accuracy in RMET in general, whereas emotional abuse specifically interfered with the accuracy in the positive and negative valences if it co-occurred with early-life neglect. To test the dose-response relationship between the number of childhood adversities and RMET capacities, we subjected RMET data of the MDD group to multiple hierarchical regressions: the number of childhood adversities was a significant predictor of RMET total scores and RMET scores in the negative valence after controlling for age, sex, years of education, and the severity of current depression. Conclusion: Childhood adversities impair ToM capacities in MDD. Exposure to early-life emotional abuse and neglect have a negative impact on the performance in the emotional valences of RMET. Multiple early-life adversities have a dose-dependent association with mental state decoding deficits.

17.
Psychiatry Res ; 270: 143-153, 2018 12.
Article in English | MEDLINE | ID: mdl-30248485

ABSTRACT

Impairments of theory of mind (ToM) are widely accepted underlying factors of disturbed relatedness in borderline personality disorder (BPD). The aim of this meta-analysis a was to assess the weighted mean effect sizes of ToM performances in BPD compared to healthy controls (HC), and to investigate the effect of demographic variables and comorbidities on the variability of effect sizes across the studies. Seventeen studies involving 585 BPD patients and 501 HC were selected after literature search. Effect sizes for overall ToM, mental state decoding and reasoning, cognitive and affective ToM, and for task types were calculated. BPD patients significantly underperformed HC in overall ToM, mental state reasoning, and cognitive ToM, but had no deficits in mental state decoding. Affective ToM performance was largely task dependent in BPD. Comorbid anxiety disorders had a positive moderating effect on overall and affective ToM in BPD. Our results support the notion that BPD patients' have specific ToM impairments. Further research is necessary to evaluate the role of confounding factors, especially those of clinical comorbidities, neurocognitive functions, and adverse childhood life events. Complex ToM tasks with high contextual demands seem to be the most appropriate tests to assess ToM in patients with BPD.


Subject(s)
Anxiety Disorders/physiopathology , Borderline Personality Disorder/physiopathology , Cognitive Dysfunction/physiopathology , Theory of Mind/physiology , Adult , Anxiety Disorders/epidemiology , Borderline Personality Disorder/epidemiology , Cognitive Dysfunction/epidemiology , Comorbidity , Female , Humans , Male , Young Adult
18.
Front Pharmacol ; 9: 786, 2018.
Article in English | MEDLINE | ID: mdl-30083103

ABSTRACT

Marijuana is a widely used recreational drug with increasing legalization worldwide for medical purposes. Most experimental studies use either synthetic or plant-derived cannabinoids to investigate the effect of cannabinoids on anxiety and cognitive functions. The aim of this study was to mimic real life situations where young people smoke cannabis regularly to relax from everyday stress. Therefore, we exposed young adult male NMRI mice to daily stress and concomitant marijuana smoke for 2 months and investigated the consequences on physiology, behavior and adult hippocampal neurogenesis. Animals were restrained for 6-h/day for 5-days a week. During the stress, mice were exposed to cannabis smoke for 2 × 30 min/day. We burned 2 "joints" (2 × 0.8 g marijuana) per occasion in a whole body smoking chamber. Cannabinoid content of the smoke and urine samples was measured by HPLC and SFC-MS/MS. Body weight gain was recorded daily and we did unrestrained, whole body plethysmography to investigate pulmonary functions. The cognitive performance of the animals was evaluated by the novel object recognition and Y maze tests. Anxietyrelated spontaneous locomotor activity and self-grooming were assessed in the open field test (OFT). Adult neurogenesis was quantified post mortem in the hippocampal dentate gyrus. The proliferative activity of the precursor cells was detected by the use of the exogenous marker 5-bromo-20-deoxyuridine. Treatment effects on maturing neurons were studied by the examination of doublecortin-positive neurons. Both stress and cannabis exposure significantly reduced body weight gain. Cannabis smoke had no effect on pulmonary functions, but stress delayed the maturation of several lung functions. Neither stress, nor cannabis smoke affected the cognitive functioning of the animals. Results of the OFT revealed that cannabis had a mild anxiolytic effect and markedly increased self-grooming behavior. Stress blocked cell proliferation in the dentate gyrus, but cannabis had no effect on this parameter. Marijuana smoke however had a pronounced impact on doublecortin-positive neurons influencing their number, morphology and migration. In summary, we report here that long-term stress in combination with cannabis smoke exposure can alter several health-related measures, but the present experimental design could not reveal any interaction between these two treatment factors except for body weight gain.

19.
Front Cell Neurosci ; 12: 148, 2018.
Article in English | MEDLINE | ID: mdl-29973870

ABSTRACT

Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient. Post mortem quantitative histopathology was used to examine the effect of stress on parvalbumin (PV)-, calretinin- (CR), calbindin- (CB), cholecystokinin- (CCK), somatostatin-(SST) and neuropeptide Y-positive (NPY+) GABAergic neuron numbers in all cortical subareas of the mPFC (anterior cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) cortexes). In vitro, whole-cell patch-clamp recordings from layer II-III pyramidal neurons of the ventral mPFC was used to examine GABAergic neurotransmission. The cognitive performance of the animals was assessed in a hippocampal-prefrontal-cortical circuit dependent learning task. Stress exposure reduced the number of CCK-, CR- and PV-positive GABAergic neurons in the mPFC, most prominently in the IL cortex. Interestingly, in the stress-resilient animals, we found higher number of neuropeptide Y-positive neurons in the entire mPFC. The electrophysiological analysis revealed reduced frequencies of spontaneous and miniature IPSCs in the anhedonic rats and decreased release probability of perisomatic-targeting GABAergic synapses and alterations in GABAB receptor mediated signaling. In turn, pyramidal neurons showed higher excitability. Anhedonic rats were also significantly impaired in the object-place paired-associate learning task. These data demonstrate that long-term stress results in functional and structural deficits of prefrontal GABAergic networks. Our findings support the concept that fronto-limbic GABAergic dysfunctions may contribute to emotional and cognitive symptoms of MDD.

20.
Front Mol Neurosci ; 11: 56, 2018.
Article in English | MEDLINE | ID: mdl-29535607

ABSTRACT

Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the "gliocentric theory", glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation-mediated by microglial activation-triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the "gliocentric" theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...