Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Article in English | MEDLINE | ID: mdl-32203420

ABSTRACT

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Subject(s)
Cytoskeleton/genetics , GTPase-Activating Proteins/genetics , Integrins/genetics , Mechanotransduction, Cellular/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , rac1 GTP-Binding Protein/genetics , Animals , COS Cells , Cell Adhesion , Cell Line , Cell Movement , Chlorocebus aethiops , Computational Biology , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Dogs , Fibroblasts/metabolism , Fibroblasts/ultrastructure , GTPase-Activating Proteins/classification , GTPase-Activating Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Integrins/metabolism , Madin Darby Canine Kidney Cells , Mice , Pan troglodytes , Protein Domains , Rats , Rho Guanine Nucleotide Exchange Factors/classification , Rho Guanine Nucleotide Exchange Factors/metabolism , rac1 GTP-Binding Protein/metabolism
2.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30862660

ABSTRACT

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Subject(s)
Gene Expression Regulation, Developmental/genetics , MyoD Protein/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factor HES-1/metabolism , Animals , Cells, Cultured , Mice , MyoD Protein/genetics , Receptors, Notch/metabolism , Signal Transduction , Transcription Factor HES-1/genetics
3.
Nat Commun ; 7: 12963, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27713425

ABSTRACT

Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , GTPase-Activating Proteins/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , 3T3 Cells , Animals , Carcinogenesis/pathology , Catalytic Domain/physiology , Cell Line, Tumor , Cerebellar Neoplasms/pathology , Dogs , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Protein Binding/physiology , Protein Kinase Inhibitors/metabolism , Proteolysis , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/physiology , Ubiquitination/physiology
4.
Dev Biol ; 395(2): 307-16, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25220152

ABSTRACT

Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network - MyoD, Myf5 and Mrf4 - executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1(LacZ/Ki) mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1(LacZ/Ki) mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.


Subject(s)
Facial Muscles/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Morphogenesis/physiology , Muscle, Skeletal/embryology , Signal Transduction/physiology , Torso/embryology , Animals , Calcium-Binding Proteins , DNA Primers/genetics , Flow Cytometry , Immunohistochemistry , In Situ Hybridization , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Mutant Strains , PAX7 Transcription Factor/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Notch/metabolism , Satellite Cells, Skeletal Muscle/metabolism
5.
Dev Cell ; 23(3): 469-81, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22940113

ABSTRACT

Skeletal muscle growth and regeneration rely on myogenic progenitor and satellite cells, the stem cells of postnatal muscle. Elimination of Notch signals during mouse development results in premature differentiation of myogenic progenitors and formation of very small muscle groups. Here we show that this drastic effect is rescued by mutation of the muscle differentiation factor MyoD. However, rescued myogenic progenitors do not assume a satellite cell position and contribute poorly to myofiber growth. The disrupted homing is due to a deficit in basal lamina assembly around emerging satellite cells and to their impaired adhesion to myofibers. On a molecular level, emerging satellite cells deregulate the expression of basal lamina components and adhesion molecules like integrin α7, collagen XVIIIα1, Megf10, and Mcam. We conclude that Notch signals control homing of satellite cells, stimulating them to contribute to their own microenvironment and to adhere to myofibers.


Subject(s)
Muscle, Skeletal/cytology , Receptors, Notch/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Signal Transduction , Animals , Cell Adhesion , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Receptors, Notch/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...