Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 24(2): e202200614, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36385460

ABSTRACT

The development of methods to engineer and immobilize amine transaminases (ATAs) to improve their functionality and operational stability is gaining momentum. The quest for robust, fast, and easy-to-use methods to screen the activity of large collections of transaminases, is essential. This work presents a novel and multiplex fluorescence-based kinetic assay to assess ATA activity using 4-dimethylamino-1-naphthaldehyde as an amine acceptor. The developed assay allowed us to screen a battery of amine donors using free and immobilized ATAs from different microbial sources as biocatalysts. As a result, using chromatographic methods, 4-hydroxybenzylamine was identified as the best amine donor for the amination of 5-(hydroxymethyl)furfural. Finally, we adapted this method to determine the apparent Michaelis-Menten parameters of a model immobilized ATA at the microscopic (single-particle) level. Our studies promote the use of this multiplex, multidimensional assay to screen ATAs for further improvement.


Subject(s)
Amines , Enzymes, Immobilized , Amines/chemistry , Biocatalysis , Amination , Enzymes, Immobilized/metabolism , Transaminases/metabolism
2.
ACS Catal ; 11(24): 15051-15067, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34956691

ABSTRACT

Multidimensional kinetic analysis of immobilized enzymes is essential to understand the enzyme functionality at the interface with solid materials. However, spatiotemporal kinetic characterization of heterogeneous biocatalysts on a microscopic level and under operando conditions has been rarely approached. As a case study, we selected self-sufficient heterogeneous biocatalysts where His-tagged cofactor-dependent enzymes (dehydrogenases, transaminases, and oxidases) are co-immobilized with their corresponding phosphorylated cofactors [nicotinamide adenine dinucleotide phosphate (NAD(P)H), pyridoxal phosphate (PLP), and flavin adenine dinucleotide (FAD)] on porous agarose microbeads coated with cationic polymers. These self-sufficient systems do not require the addition of exogenous cofactors to function, thus avoiding the extensive use of expensive cofactors. To comprehend the microscopic kinetics and thermodynamics of self-sufficient systems, we performed fluorescence recovery after photobleaching measurements, time-lapse fluorescence microscopy, and image analytics at both single-particle and intraparticle levels. These studies reveal a thermodynamic equilibrium that rules out the reversible interactions between the adsorbed phosphorylated cofactors and the polycations within the pores of the carriers, enabling the confined cofactors to access the active sites of the immobilized enzymes. Furthermore, this work unveils the relationship between the apparent Michaelis-Menten kinetic parameters and the enzyme density in the confined space, eliciting a negative effect of molecular crowding on the performance of some enzymes. Finally, we demonstrate that the intraparticle apparent enzyme kinetics are significantly affected by the enzyme spatial organization. Hence, multiscale characterization of immobilized enzymes serves as an instrumental tool to better understand the in operando functionality of enzymes within confined spaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...