Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Chemosphere ; 49(3): 353-61, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12363315

ABSTRACT

The cyclization of ethyl 2-(aminosulfonyl)benzoate (ASB) to give saccharin was investigated in aqueous solutions at pH between 5.2 and 9.5 and in the temperature range of 296.2-334.2 K. The initial concentration of the reactant was varied between 1.45 x 10(-5) and 3.86 x 10(-4) M. Ultraviolet spectroscopy was used to obtain the kinetic data. The reaction is acid catalyzed and follows pseudo-first-order kinetics. The experimental rate constant, k(obs), increases with temperature and pH. Its dependence on the temperature and pH is well described by: k(obs) = k1 [OH-] = [(2.52 +/- 0.9) x 10(16) exp(-20.2 +/- 1 kcalmol(-1)/RT) s(-1)][OH-] A mechanism is proposed and the half-life of ethyl ASB is calculated.


Subject(s)
Benzoates/chemistry , Saccharin/chemistry , Sulfonamides/chemistry , Benzoates/metabolism , Catalysis , Cyclization , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Saccharin/metabolism , Spectrophotometry, Ultraviolet , Sulfonamides/metabolism , Temperature , Water Pollutants, Chemical/metabolism
2.
Inorg Chem ; 40(13): 3039-47, 2001 Jun 18.
Article in English | MEDLINE | ID: mdl-11399171

ABSTRACT

The compound CF(3)OCF(2)OCF(2)C(O)F was prepared by oxidation of hexafluoropropene with molecular oxygen in the gas-phase using CF(3)OF as initiator. (13)C NMR, FTIR, Raman, UV-vis, and mass spectra were obtained and interpreted. The theoretical structure studies were performed by the calculation of the potential energy surfaces, using the results obtained for a smaller related molecule, CF(3)OCF(2)C(O)F, as a starting point. A high degree of conformational flexibility of this compound is evidenced by the values of several conformations, varying within the range of 1 kcal/mol. Theoretical calculations predict chain conformations as the most stable molecular forms, as expected from the presence of the anomeric effect. The experimental fundamental vibrational modes are compared with those obtained theoretically, using ab initio and density functional theory methods, HF/6-31+G and B3LYP/6-31+G, respectively. The density of the compound at ambient temperature (delta = 1.7(1) g/mL), its melting point (mp = -140(5) degrees C), its boiling point (bp = 14.5 (1) degrees C), and the relation between its vapor pressure and the absolute temperature (ln P = 13.699 - 2023.4/T) were also determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...