Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Neuroimage ; 211: 116633, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32061802

ABSTRACT

Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to school age using functional and structural magnetic resonance imaging techniques. Based on standardised and age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic participants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological predispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample, the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant downstream connectivity within the speech processing system. These results provide evidence for the notion that dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.


Subject(s)
Auditory Cortex/growth & development , Child Development/physiology , Connectome , Dyslexia/physiopathology , Language , Magnetic Resonance Imaging , Nerve Net/physiopathology , Speech Perception/physiology , Child , Child, Preschool , Disease Susceptibility/diagnostic imaging , Disease Susceptibility/physiopathology , Dyslexia/diagnostic imaging , Female , Humans , Individuality , Literacy , Longitudinal Studies , Male , Nerve Net/diagnostic imaging
2.
Genet. mol. biol ; 41(1): 41-49, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-892475

ABSTRACT

Abstract An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

3.
Genet Mol Biol ; 41(1): 41-49, 2018.
Article in English | MEDLINE | ID: mdl-29473935

ABSTRACT

An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

4.
Sci Rep ; 6: 27901, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27312598

ABSTRACT

Dyslexia is a severe disorder in the acquisition of reading and writing. Several studies investigated the role of genetics for reading, writing and spelling ability in the general population. However, many of the identified SNPs were not analysed in case-control cohorts. Here, we investigated SNPs previously linked to reading or spelling ability in the general population in a German case-control cohort. Furthermore, we characterised these SNPs for functional relevance with in silico methods and meta-analysed them with previous studies. A total of 16 SNPs within five genes were included. The total number of risk alleles was higher in cases than in controls. Three SNPs were nominally associated with dyslexia: rs7765678 within DCDC2, and rs2038137 and rs6935076 within KIAA0319. The relevance of rs2038137 and rs6935076 was further supported by the meta-analysis. Functional profiling included analysis of tissue-specific expression, annotations for regulatory elements and effects on gene expression levels (eQTLs). Thereby, we found molecular mechanistical implications for 13 of all 16 included SNPs. SNPs associated in our cohort showed stronger gene-specific eQTL effects than non-associated SNPs. In summary, our results validate SNPs previously linked to reading and spelling in the general population in dyslexics and provide insights into their putative molecular pathomechanisms.


Subject(s)
Dyslexia/genetics , Microtubule-Associated Proteins/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Germany , Humans , Male , Quantitative Trait Loci , Reading
SELECTION OF CITATIONS
SEARCH DETAIL