Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737728

ABSTRACT

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Subject(s)
Ionic Liquids , Nanostructures , Humans , Oxidation-Reduction , Tin Compounds/chemistry
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674709

ABSTRACT

Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 µm and 4.75 µm. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.


Subject(s)
Endothelial Cells , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods
3.
Bioelectrochemistry ; 144: 108030, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34896782

ABSTRACT

Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.


Subject(s)
Polymers
4.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: mdl-34943812

ABSTRACT

The invention of a scanning electron microscopy (SEM) pushed the imaging methods and allowed for the observation of cell details with a high resolution. Currently, SEM appears as an extremely useful tool to analyse the morphology of biological samples. The aim of this paper is to provide a set of guidelines for using SEM to analyse morphology of prokaryotic and eukaryotic cells, taking as model cases Escherichia coli bacteria and B-35 rat neuroblastoma cells. Herein, we discuss the necessity of a careful sample preparation and provide an optimised protocol that allows to observe the details of cell ultrastructure (≥ 50 nm) with a minimum processing effort. Highlighting the versatility of morphometric descriptors, we present the most informative parameters and couple them with molecular processes. In this way, we indicate the wide range of information that can be collected through SEM imaging of biological materials that makes SEM a convenient screening method to detect cell pathology.


Subject(s)
Eukaryotic Cells/ultrastructure , Guidelines as Topic , Microscopy, Electron, Scanning , Prokaryotic Cells/ultrastructure , Animals , Escherichia coli/ultrastructure , Humans , Models, Biological
5.
Materials (Basel) ; 14(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200077

ABSTRACT

Two highly efficient commercial organic photosensitizers-azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin (APTPP)-were covalently attached to the glass surface to form a photoactive monolayer. The proposed straightforward strategy consists of three steps, i.e., the initial chemical grafting of 3-aminopropyltriethoxysilane (APTES) followed by two chemical postmodification steps. The chemical structure of the resulting mixed monolayer (MIX_TC_APTES@glass) was widely characterized by X-ray photoelectron (XPS) and Raman spectroscopies, while its photoactive properties were investigated in situ by UV-Vis spectroscopy with α-terpinene as a chemical trap. It was shown that both photosensitizers retain their activity toward light-activated generation of reactive oxygen species (ROS) after immobilization on the glassy surface and that the resulting nanolayer shows high stability. Thanks to the complementarity of the spectral properties of AA and APTPP, the effectiveness of the ROS photogeneration under broadband illumination can be optimized. The reported light-activated nanocoating demonstrated promising antimicrobial activity toward Escherichia coli (E. coli), by reducing the number of adhered bacteria compared to the unmodified glass surface.

6.
Polymers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208221

ABSTRACT

The aspiration to interact living cells with electronics challenges researchers to develop materials working at the interface of these two distinct environments. A successful interfacing coating should exhibit both biocompatibility and desired functionality of a bio-integrated device. Taking into account biodiversity, the tissue interface should be fine-tuned to the specific requirements of the bioelectronic systems. In this study, we pointed to electrochemical doping of conducting polymers as a strategy enabling the efficient manufacturing of interfacing platforms, in which features could be easily adjusted. Consequently, we fabricated conducting films based on a poly(3,4-ethylenedioxythiophene) (PEDOT) matrix, with properties modulated through doping with selected ions: PSS- (poly(styrene sulfonate)), ClO4- (perchlorate), and PF6- (hexafluorophosphate). Striving to extend the knowledge on the relationships governing the dopant effect on PEDOT films, the samples were characterized in terms of their chemical, morphological, and electrochemical properties. To investigate the impact of the materials on attachment and growth of cells, rat neuroblastoma B35 cells were cultured on their surface and analyzed using scanning electron microscopy and biological assays. Eventually, it was shown that through the choice of a dopant and doping conditions, PEDOT-based materials can be efficiently tuned with diversified physicochemical properties. Therefore, our results proved electrochemical doping of PEDOT as a valuable strategy facilitating the development of promising tissue interfacing materials with characteristics tailored as required.

7.
Mater Sci Eng C Mater Biol Appl ; 123: 112017, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812635

ABSTRACT

The growth of bacteria and the formation of complex bacterial structures on biomedical devices is a major challenge in modern medicine. The aim of this study was to develop a biocompatible, conducting and antibacterial polymer coating applicable in biomedical engineering. Since conjugated polymers have recently aroused strong interest as controlled delivery systems for biologically active compounds, we decided to employ a poly(3,4-ethylenedioxythiophene) (PEDOT) matrix to immobilize a powerful, first-line antibiotic: tetracycline (Tc). Drug immobilization was carried out simultaneously with the electrochemical polymerization process, allowing to obtain a polymer coating with good electrochemical behaviour (charge storage capacity of 19.15 ± 6.09 mC/cm2) and high drug loading capacity (194.7 ± 56.2 µg/cm2). Biological activity of PEDOT/Tc matrix was compared with PEDOT matrix and a bare Pt surface against a model Gram-negative bacteria strain of Escherichia coli with the use of LIVE/DEAD assay and SEM microscopy. Finally, PEDOT/Tc was shown to serve as a robust electroactive coating exhibiting antibacterial activity.


Subject(s)
Anti-Infective Agents , Polymers , Anti-Bacterial Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology
8.
Materials (Basel) ; 13(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545439

ABSTRACT

Due to its biocompatibility and advantageous electrochemical properties, platinum is commonly used in the design of biomedical devices, e.g., surgical instruments, as well as electro-medical or orthopedic implants. This article verifies the hypothesis that a thin layer of sputter-coated platinum may possess antibacterial effects. The purpose of this research was to investigate the adhesion and growth ability of a model strain of Gram-negative bacteria, Escherichia coli, on a surface of a platinum-coated glass slide. Although some previous literature reports suggests that a thin layer of platinum would inhibit the formation of bacterial biofilm, the results of this study suggest otherwise. The decrease in the number of bacterial cells attached to the platinum-coated glass, which was observed within first three hours of culturing, was found to be a short-time effect, vanishing after 24 h. Consequently, it was shown that a thin layer of sputter-coated platinum did not exhibit any antibacterial effect. For this reason, this study indicates an urgent need for the development of new methods of surface modification that could reduce bacterial surface colonization of platinum-based biomedical devices.

9.
Bioelectrochemistry ; 131: 107401, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707278

ABSTRACT

Although the term bioelectrochemistry tends to be associated with animal and human tissues, bioelectric currents exist also in plants and bacteria. Especially the latter, when agglomerated in the form of biofilms, can exhibit electroactivity and susceptibility to electrical stimulation. Therefore, electrochemical methods appear to become powerful techniques to expand the conventional strategies of biofilm characterization and modification. In this review, we aim to provide the insight into the electrochemical behaviour of bacteria and present the variety of electrochemical techniques that can be used either for the non-destructive monitoring of bacterial communities or modulation of their growth. The most common applications of electrical stimulation on biofilms are presented, including the prevention of bacterial growth by charging the surface of the materials, changing the direction of bacterial movement under the influence of the electric field and increasing of the potency of antibiotics when bactericides are coupled with the electric field. Also, the industrial applications of microbial electro-technologies are described, such as bioremediation, wastewater treatment, and microbial fuel cells. Consequently, we are showing the complexity of interactions that exist between electrochemistry and bacteriology that can be used for the benefit of these two disciplines.


Subject(s)
Bacteriology , Biofilms , Electrochemical Techniques/methods , Electrochemistry/methods , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...