Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 291(4): 705-721, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37943159

ABSTRACT

Phosphatidic acid (PA) is the precursor of most phospholipids like phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. In bacteria, its biosynthesis begins with the acylation of glycerol-3-phosphate to lysophosphatidic acid (LPA), which is further acylated to PA by the PlsC enzyme. Some bacteria, like the plant pathogen Xanthomonas campestris, use a similar pathway to acylate lysophosphatidylcholine to phosphatidylcholine (PC). Previous studies assigned two acyltransferases to PC formation. Here, we set out to study their activity and found a second much more prominent function of these enzymes in LPA to PA conversion. This PlsC-like activity was supported by the functional complementation of a temperature-sensitive plsC-deficient Escherichia coli strain. Biocomputational analysis revealed two further PlsC homologs in X. campestris. The cellular levels of the four PlsC-like proteins varied with respect to growth phase and growth temperature. To address the question whether these enzymes have redundant or specific functions, we purified two recombinant, detergent-solubilized enzymes in their active form, which enabled the first direct biochemical comparison of PlsC isoenzymes from the same organism. Overlapping but not identical acyl acceptor and acyl donor preferences suggest redundant and specialized functions of the X. campestris PlsC enzymes. The altered fatty acid composition in plsC mutant strains further supports the functional differentiation of these enzymes.


Subject(s)
Xanthomonas campestris , Xanthomonas campestris/genetics , Acyltransferases/metabolism , Escherichia coli/metabolism , Fatty Acids
2.
Front Microbiol ; 12: 754486, 2021.
Article in English | MEDLINE | ID: mdl-34899640

ABSTRACT

Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.

3.
Appl Microbiol Biotechnol ; 105(23): 8837-8851, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34709431

ABSTRACT

Escherichia coli is the daily workhorse in molecular biology research labs and an important platform microorganism in white biotechnology. Its cytoplasmic membrane is primarily composed of the phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL). As in most other bacteria, the typical eukaryotic phosphatidylcholine (PC) is not a regular component of the E. coli membrane. PC is known to act as a substrate in various metabolic or catabolic reactions, to affect protein folding and membrane insertion, and to activate proteins that originate from eukaryotic environments. Options to manipulate the E. coli membrane to include non-native lipids such as PC might make it an even more powerful and versatile tool for biotechnology and protein biochemistry. This article outlines different strategies how E. coli can be engineered to produce PC and other methylated PE derivatives. Several of these approaches rely on the ectopic expression of genes from natural PC-producing organisms. These include PC synthases, lysolipid acyltransferases, and several phospholipid N-methyltransferases with diverse substrate and product preferences. In addition, we show that E. coli has the capacity to produce PC by its own enzyme repertoire provided that appropriate precursors are supplied. Screening of the E. coli Keio knockout collection revealed the lysophospholipid transporter LplT to be responsible for the uptake of lyso-PC, which is then further acylated to PC by the acyltransferase-acyl carrier protein synthetase Aas. Overall, our study shows that the membrane composition of the most routinely used model bacterium can readily be tailored on demand.Key points• Escherichia coli can be engineered to produce non-native methylated PE derivatives.• These lipids can be produced by foreign and endogenous proteins.• Modification of E. coli membrane offers potential for biotechnology and research.


Subject(s)
Escherichia coli , Phospholipids , Biological Transport , Cell Membrane/metabolism , Escherichia coli/genetics , Lipids , Phospholipids/metabolism
4.
Environ Microbiol ; 23(11): 6993-7008, 2021 11.
Article in English | MEDLINE | ID: mdl-34528360

ABSTRACT

The bacterial membrane is constantly remodelled in response to environmental conditions and the external supply of precursor molecules. Some bacteria are able to acquire exogenous lyso-phospholipids and convert them to the corresponding phospholipids. Here, we report that some soil-dwelling bacteria have alternative options to metabolize lyso-phosphatidylglycerol (L-PG). We find that the plant-pathogen Agrobacterium tumefaciens takes up this mono-acylated phospholipid and converts it to two distinct isoforms of the non-canonical lipid bis(monoacylglycero)phosphate (BMP). Chromatographic separation and quadrupole-time-of-flight MS/MS analysis revealed the presence of two possible BMP stereo configurations acylated at either of the free hydroxyl groups of the glycerol head group. BMP accumulated in the inner membrane and did not visibly alter cell morphology and growth behaviour. The plant-associated bacterium Sinorhizobium meliloti was also able to convert externally provided L-PG to BMP. Other bacteria like Pseudomonas fluorescens and Escherichia coli metabolized L-PG after cell disruption, suggesting that BMP production in the natural habitat relies both on dedicated uptake systems and on head-group acylation enzymes. Overall, our study adds two previously overlooked phospholipids to the repertoire of bacterial membrane lipids and provides evidence for the remarkable condition-responsive adaptation of bacterial membranes.


Subject(s)
Sinorhizobium meliloti , Tandem Mass Spectrometry , Lysophospholipids , Monoglycerides/chemistry , Sinorhizobium meliloti/metabolism
5.
Mol Microbiol ; 111(1): 269-286, 2019 01.
Article in English | MEDLINE | ID: mdl-30353924

ABSTRACT

Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.


Subject(s)
Agrobacterium tumefaciens/pathogenicity , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Homeostasis , Lysine/metabolism , Phosphatidylglycerols/metabolism , Virulence Factors/metabolism , Agrobacterium tumefaciens/growth & development , Bacterial Proteins/genetics , Catalytic Domain , DNA Mutational Analysis , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , Gene Deletion , Genetic Complementation Test , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Transformation, Genetic , Virulence , Virulence Factors/genetics
6.
PLoS One ; 11(7): e0160373, 2016.
Article in English | MEDLINE | ID: mdl-27472399

ABSTRACT

Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants.


Subject(s)
Agrobacterium tumefaciens/enzymology , Membrane Proteins/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Genes, Bacterial , Membrane Proteins/chemistry , Mutation , Sequence Homology, Amino Acid , Transferases (Other Substituted Phosphate Groups)/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...