Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 19923, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37964081

ABSTRACT

Armed conflicts have, in addition to severe impacts on human lives and infrastructure, also impacts on the environment, which needs to be assessed and documented. On September the 26th 2022, unknown perpetrators deliberately ruptured the two gas pipelines Nord Stream 1 and 2 with four coordinated explosions near a major chemical munition dump site near the Danish island of Bornholm in the Baltic Sea. While the massive release of natural gas into atmosphere raised serious concerns concerning the contribution to climate change-this paper assesses the overlooked direct impact of the explosions on the marine ecosystem. Seals and porpoises within a radius of four km would be at high risk of being killed by the shockwave, while temporary impact on hearing would be expected up to 50 km away. As the Baltic Proper population of harbour porpoises (Phocoena phocoena) is critically endangered, the loss or serious injury of even a single individual is considered a significant impact on the population. The rupture moreover resulted in the resuspension of 250000 metric tons of heavily contaminated sediment from deep-sea sedimentary basin for over a week, resulting in unacceptable toxicological risks towards fish and other biota in 11 km3 water in the area for more than a month.


Subject(s)
Phocoena , Seals, Earless , Animals , Atmosphere , Ecosystem , Rivers
3.
Ecotoxicol Environ Saf ; 262: 115116, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37315364

ABSTRACT

During the 20th century, thousands of tons of munitions containing organoarsenic chemical warfare agents (CWAs) were dumped into oceans, seas and inland waters around the world. As a result, organoarsenic CWAs continue to leak from corroding munitions into sediments and their environmental concentrations are expected to peak over the next few decades. There remains, however, a lack of knowledge about their potential toxicity to aquatic vertebrates, such as fish. The aim of this study was to fill in this gap in research, by investigating the acute toxicity of organoarsenic CWAs on fish embryos, using the model species, Danio rerio. To estimate the acute toxicity thresholds of organoarsenic CWAs (Clark I, Adamsite, PDCA), a CWA-related compound (TPA), as well as four organoarsenic CWA degradation products (Clark I[ox], Adamsite[ox], PDCA[ox], TPA[ox]), standardized tests were performed following the OECD no. 236 Fish Embryo Acute Toxicity Test guidelines. Additionally, the detoxification response in D. rerio embryos was investigated by analysing the mRNA expression of five genes encoding antioxidant enzymes (CAT, SOD, GPx, GR and GST). During the 96 h of exposure, organoarsenic CWAs induced lethal effects in D. rerio embryos at very low concentrations (classified as 1st category pollutants according to GHS categorization), and were therefore deemed to be serious environmental hazards. Although TPA and the four CWA degradation products caused no acute toxicity even at their maximum solubility, the transcription of antioxidant-related genes was altered upon exposure to these compounds, indicating the need for further testing for chronic toxicity. Incorporating the results of this study into ecological risk assessments will provide a more accurate prediction of the environmental hazards posed by CWA-related organoarsenicals.

4.
Toxics ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35622620

ABSTRACT

Several hundred thousand tonnes of munitions containing chemical warfare agents (CWAs) are lying on the seafloor worldwide. CWAs have started leaking from corroded munitions, and their presence in the environment and in organisms inhabiting dump sites has been detected. The presence of CWAs in the water negatively affects fish, macrobenthos and free-living bacteria. It can be expected that the presence of CWAs would also affect the gut-associated bacteria in fish, which are vital for their condition. The main aim of this study was to test if the microbiota of cod collected in the Baltic Bornholm Deep (highly polluted with CWAs) is dysregulated. To investigate this, we conducted metagenomic studies based on 16S rRNA gene sequencing. We found that the microbiota of cod inhabiting the dump site was significantly less taxonomically diverse compared to those from a non-polluted reference site. Moreover, taxa associated with fish diseases (e.g., Vibrionaceae, Aeromonadaceae) were more prevalent, and probiotic taxa (e.g., Actinobacteriota, Rhodobacteraceae) were less frequent in the guts of individuals from the dump site, than those from the reference site. The differences in vulnerability of various bacterial taxa inhabiting cod gastrointestinal tracts to CWAs were hypothesised to be responsible for the observed microbiota dysregulation.

5.
Aquat Toxicol ; 230: 105693, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310671

ABSTRACT

Sea dumping of chemical warfare (CW) took place worldwide during the 20th century. Submerged CW included metal bombs and casings that have been exposed for 50-100 years of corrosion and are now known to be leaking. Therefore, the arsenic-based chemical warfare agents (CWAs), pose a potential threat to the marine ecosystems. The aim of this research was to support a need for real-data measurements for accurate risk assessments and categorization of threats originating from submerged CWAs. This has been achieved by providing a broad insight into arsenic-based CWAs acute toxicity in aquatic ecosystems. Standard tests were performed to provide a solid foundation for acute aquatic toxicity threshold estimations of CWA: Lewisite, Adamsite, Clark I, phenyldichloroarsine (PDCA), CWA-related compounds: TPA, arsenic trichloride and four arsenic-based CWA degradation products. Despite their low solubility, during the 48 h exposure, all CWA caused highly negative effects on Daphnia magna. PDCA was very toxic with 48 h D. magna LC50 at 0.36 µg × L-1 and Lewisite with EC50 at 3.2 µg × L-1. Concentrations at which no immobilization effects were observed were slightly above the analytical Limits of Detection (LOD) and Quantification (LOQ). More water-soluble CWA degradation products showed no effects at concentrations up to 100 mg × L-1.


Subject(s)
Arsenic/toxicity , Chemical Warfare Agents/toxicity , Daphnia/drug effects , Water Pollutants, Chemical/toxicity , Animals , Arsenic/analysis , Arsenicals/analysis , Chemical Warfare Agents/analysis , Chlorides/analysis , Ecosystem , Lethal Dose 50 , Limit of Detection , Seawater/chemistry , Toxicity Tests, Acute , Water Pollutants, Chemical/analysis
6.
Mar Environ Res ; 161: 105077, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32853855

ABSTRACT

Sulphur mustard (HD) was the most widely produced chemical warfare agent (CWA) in the history of chemical warfare (CW). Simultaneously, the loads of HD account as by far the largest fraction of the sea-dumped CW. Nowadays its presence in the marine ecosystems recognized as a serious threat for marine users and maritime industries. Although, during over a decade of research much has been done to assess the environmental threats linked with underwater chemical munitions. There are, however, essential gaps in scientific knowledge including scarce information about the aquatic toxicity thresholds of HD and its degradation products. Standardized biotests were performed according to the Organisation for Economic Co-operation and Development (OECD) Test No. 202: Daphnia sp. Acute Immobilisation Test guidelines. Obtained results provide a solid foundation for comparison and categorisation of threats of HD and its degradation products. With the D. magna LC50 aquatic acute toxicity threshold at as low as 224 ± 12 µg × L-1, 1,2,5-trithiepane is very toxic, being one of the most toxic CWA degradation products that have been investigated up to date. It exhibits stronger effects than 1,4,5-oxadithiepane and diluted HD that turn out to be toxic. In total, the toxicity of 7 compounds has been estimated. Whenever possible, toxicity thresholds were compared with previously existing data originating from different biotests and mathematical modelling.


Subject(s)
Chemical Warfare Agents , Mustard Gas , Water Pollutants, Chemical , Animals , Chemical Warfare Agents/analysis , Chemical Warfare Agents/toxicity , Daphnia , Ecosystem , Lethal Dose 50 , Mustard Gas/analysis , Mustard Gas/toxicity , Toxicity Tests, Acute , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Environ Pollut ; 266(Pt 3): 115142, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32750525

ABSTRACT

Chemical warfare agents (CWA) dumped worldwide in all types of aquatic reservoirs pose a potential environmental hazard. Leakage of CWAs from eroding containers at dumping sites had been observed, and their presence in the tissues of aquatic animals was confirmed. However, the ecological effects of CWA have not yet been studied. In standardized laboratory bioassays, we tested if sublethal concentration of Clark I, an arsenic based CWA, can affect life histories (somatic growth rate, fecundity, size at maturity), population growth rate and stable isotope signatures of a keystone crustacean grazer Daphnia magna. We found that the life histories and fitness of daphnids reared in the presence of Clark I differed from those reared in Clark-free conditions. The effects were observed when Clark I concentrations were no less than 5 µg×L-1. With increasing concentrations of the tested CWA, all of the tested parameters decreased linearly. The finding indicates that even sublethal concentrations of Clark I can affect crustacean populations, which should be taken into account when assessing the environmental risks of this particular CWA. We found intraspecific diversity in susceptibility to Clark I, with some clones being significantly less vulnerable than others. We also found that in the presence of Clark I, the ratio of heavy and light isotopes of nitrogen in the bodies of daphnids was affected - daphnids exhibited δ15N enrichment with increasing concentrations of this CWA. The isotopic composition of carbon was not affected by the presence of Clark I. The nitrogen isotopic signature may be used as an indicator of stress in zooplankton exposed to the presence of toxic xenobiotics.


Subject(s)
Arsenic , Chemical Warfare Agents , Water Pollutants, Chemical/analysis , Animals , Daphnia , Nitrogen Isotopes/analysis
8.
Mar Environ Res ; 161: 105112, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32861968

ABSTRACT

About 50 000 tons of chemical weapons (CW) were dumped to the Baltic Sea after the Second World War. Munitions are located in the deep areas of the Baltic Sea, and there they act as a point source of contamination to the ecosystem. Corroded munitions release chemical warfare agents (CWAs) to nearby water and sediments. In this study we investigated known dumpsites (Bornholm, Gotland and Gdansk Deep) and dispersed chemical munitions, to evaluate the extent of contamination of nearby sediments, as well as to assess the degradation process of released CWA. It was found that CWA-related phenylarsenic chemicals (Clark I, Clark II and Adamsite) and sulfur mustard are released to the sediments and undergo environmental degradation to chemicals, of which some remain toxic. The extent of pollution of released CWAs and their corresponding degradation products reaches more than 250 m from the CW objects, and seem to follow a power curve decrease of concentration from the source. Bornholm Deep is characterised with the highest concentration of CWAs in sediments, but occasional concentration peaks are also observed in the Gdansk Deep and close to dispersed munitions. Detailed investigation of spreading pattern show that the range of pollution depends on bottom currents and topography.


Subject(s)
Chemical Warfare Agents , Water Pollutants, Chemical , Baltic States , Chemical Warfare Agents/analysis , Chemical Warfare Agents/toxicity , Ecosystem , Geologic Sediments , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 616-617: 1485-1497, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29111251

ABSTRACT

The Baltic Sea is a severely disturbed marine ecosystem that has previously been used as a dumping ground for Chemical Warfare Agents (CW). The presence of unexploded underwater ordnance is an additional risk factor for offshore activities and an environmental risk for the natural resources of the sea. In this paper, the focus is on descriptions of the marine habitat based on the observations arising from studies linked to the CHEMSEA, MODUM and DAIMON projects. Investigated areas of Bornholm, Gotland and Gdansk Deeps are similarly affected by the Baltic Sea eutrophication, however, at depths greater than 70m several differences in local hydrological regimes and pore-water heavy metal concentrations between those basins were observed. During the lifespan of presented studies, we were able to observe the effects of Major Baltic Inflow, that started in December 2014, on local biota and their habitats, especially in the Bornholm Deep area. Reappearance of several meiofauna taxa and one macrofauna specimen was observed approximately one year after this phenomenon, however it's ecological effects already disappeared in March 2017. According to our findings and to the EUNIS Habitat Classification, the three reviewed areas should be characterized as Deep Sea Muddy Sands, while the presence of suspicious bomb-like objects both beneath and on top of the sediments confirms their CW dumpsite status.

SELECTION OF CITATIONS
SEARCH DETAIL
...