Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Rep ; 13(1): 22025, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086911

ABSTRACT

A lack of methods to identify individual animals can be a barrier to zoonoses control. We developed and field-tested facial recognition technology for a mobile phone application to identify dogs, which we used to assess vaccination coverage against rabies in rural Tanzania. Dogs were vaccinated, registered using the application, and microchipped. During subsequent household visits to validate vaccination, dogs were registered using the application and their vaccination status determined by operators using the application to classify dogs as vaccinated (matched) or unvaccinated (unmatched), with microchips validating classifications. From 534 classified dogs (251 vaccinated, 283 unvaccinated), the application specificity was 98.9% and sensitivity 76.2%, with positive and negative predictive values of 98.4% and 82.8% respectively. The facial recognition algorithm correctly matched 249 (99.2%) vaccinated and microchipped dogs (true positives) and failed to match two (0.8%) vaccinated dogs (false negatives). Operators correctly identified 186 (74.1%) vaccinated dogs (true positives), and 280 (98.9%) unvaccinated dogs (true negatives), but incorrectly classified 58 (23.1%) vaccinated dogs as unmatched (false negatives). Reduced application sensitivity resulted from poor quality photos and light-associated color distortion. With development and operator training, this technology has potential to be a useful tool to identify dogs and support research and intervention programs.


Subject(s)
Dog Diseases , Rabies Vaccines , Rabies , Animals , Dogs , Automated Facial Recognition , Dog Diseases/diagnosis , Dog Diseases/prevention & control , Zoonoses , Vaccination/veterinary , Immunization Programs , Rabies/prevention & control
2.
One Health ; 17: 100575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37332884

ABSTRACT

Abstract: Sustained vaccination coverage of domestic dog populations can interrupt rabies transmission. However, challenges remain including low dog owner participation, high operational costs associated with current (centralized and annually delivered (pulse)) approaches and high dog population turnover. To address these challenges an alternative (community-based continuous mass dog vaccination (CBC-MDV)) approach was designed. We investigated the potential for successful normalization of CBC-MDV into routine practice within the context of local communities and the veterinary system of Tanzania. Methods: In a process evaluation of a pilot implementation of CBC-MDV, we conducted in-depth interviews with implementers and community leaders (n = 24), focus group discussion with implementers and community members (n = 12), and non-participant observation (n = 157 h) of delivery of the intervention components. We analyzed these data thematically drawing on the normalization process theory, to assess factors affecting implementation and integration. Main findings: Implementers and community members clearly understood the values and benefits of the CBC-MDV, regarding it as an improvement over the pulse strategy. They had a clear understanding of what was required to enact CBC-MDV and considered their own involvement to be legitimate. The approach fitted well into routine schedules of implementers and the context (infrastructure, skill sets and policy). Implementers and community members positively appraised CBC-MDV in terms of its perceived impact on rabies and recommended its use across the country. Implementers and community members further believed that vaccinating dogs free of charge was critical and made community mobilization easier. However, providing feedback to communities and involving them in evaluating outcomes of vaccination campaigns were reported to have not been done. Local politics was cited as a barrier to collaboration between implementers and community leaders. Conclusion: This work suggests that CBC-MDV has the potential to be integrated and sustained in the context of Tanzania. Involving communities in design, delivery and monitoring of CBC-MDV activities could contribute to improving and sustaining its outcomes.

3.
Elife ; 122023 05 25.
Article in English | MEDLINE | ID: mdl-37227428

ABSTRACT

Background: Dog-mediated rabies is endemic across Africa causing thousands of human deaths annually. A One Health approach to rabies is advocated, comprising emergency post-exposure vaccination of bite victims and mass dog vaccination to break the transmission cycle. However, the impacts and cost-effectiveness of these components are difficult to disentangle. Methods: We combined contact tracing with whole-genome sequencing to track rabies transmission in the animal reservoir and spillover risk to humans from 2010 to 2020, investigating how the components of a One Health approach reduced the disease burden and eliminated rabies from Pemba Island, Tanzania. With the resulting high-resolution spatiotemporal and genomic data, we inferred transmission chains and estimated case detection. Using a decision tree model, we quantified the public health burden and evaluated the impact and cost-effectiveness of interventions over a 10-year time horizon. Results: We resolved five transmission chains co-circulating on Pemba from 2010 that were all eliminated by May 2014. During this period, rabid dogs, human rabies exposures and deaths all progressively declined following initiation and improved implementation of annual islandwide dog vaccination. We identified two introductions to Pemba in late 2016 that seeded re-emergence after dog vaccination had lapsed. The ensuing outbreak was eliminated in October 2018 through reinstated islandwide dog vaccination. While post-exposure vaccines were projected to be highly cost-effective ($256 per death averted), only dog vaccination interrupts transmission. A combined One Health approach of routine annual dog vaccination together with free post-exposure vaccines for bite victims, rapidly eliminates rabies, is highly cost-effective ($1657 per death averted) and by maintaining rabies freedom prevents over 30 families from suffering traumatic rabid dog bites annually on Pemba island. Conclusions: A One Health approach underpinned by dog vaccination is an efficient, cost-effective, equitable, and feasible approach to rabies elimination, but needs scaling up across connected populations to sustain the benefits of elimination, as seen on Pemba, and for similar progress to be achieved elsewhere. Funding: Wellcome [207569/Z/17/Z, 095787/Z/11/Z, 103270/Z/13/Z], the UBS Optimus Foundation, the Department of Health and Human Services of the National Institutes of Health [R01AI141712] and the DELTAS Africa Initiative [Afrique One-ASPIRE/DEL-15-008] comprising a donor consortium of the African Academy of Sciences (AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), the New Partnership for Africa's Development Planning and Coordinating (NEPAD) Agency, Wellcome [107753/A/15/Z], Royal Society of Tropical Medicine and Hygiene Small Grant 2017 [GR000892] and the UK government. The rabies elimination demonstration project from 2010-2015 was supported by the Bill & Melinda Gates Foundation [OPP49679]. Whole-genome sequencing was partially supported from APHA by funding from the UK Department for Environment, Food and Rural Affairs (Defra), Scottish government and Welsh government under projects SEV3500 and SE0421.


Subject(s)
Bites and Stings , Dog Diseases , Rabies Vaccines , Rabies , Dogs , Animals , Humans , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Contact Tracing , Cost-Benefit Analysis , Rabies Vaccines/genetics , Tanzania/epidemiology , Genomics , Bites and Stings/epidemiology , Dog Diseases/epidemiology , Dog Diseases/prevention & control
4.
Viruses ; 14(4)2022 04 16.
Article in English | MEDLINE | ID: mdl-35458560

ABSTRACT

Human rabies can be prevented through mass dog vaccination campaigns; however, in rabies endemic countries, pulsed central point campaigns do not always achieve the recommended coverage of 70%. This study describes the development of a novel approach to sustain high coverage based on decentralized and continuous vaccination delivery. A rabies vaccination campaign was conducted across 12 wards in the Mara region, Tanzania to test this approach. Household surveys were used to obtain data on vaccination coverage as well as factors influencing dog vaccination. A total 17,571 dogs were vaccinated, 2654 using routine central point delivery and 14,917 dogs using one of three strategies of decentralized continuous vaccination. One month after the first vaccination campaign, coverage in areas receiving decentralized vaccinations was higher (64.1, 95% Confidence Intervals (CIs) 62.1-66%) than in areas receiving pulsed vaccinations (35.9%, 95% CIs 32.6-39.5%). Follow-up surveys 10 months later showed that vaccination coverage in areas receiving decentralized vaccinations remained on average over 60% (60.7%, 95% CIs 58.5-62.8%) and much higher than in villages receiving pulsed vaccinations where coverage was on average 32.1% (95% CIs 28.8-35.6%). We conclude that decentralized continuous dog vaccination strategies have the potential to improve vaccination coverage and maintain herd immunity against rabies.


Subject(s)
Dog Diseases , Rabies Vaccines , Rabies , Animals , Dog Diseases/prevention & control , Dogs , Immunity, Herd , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Vaccination/veterinary , Vaccination Coverage
5.
Front Vet Sci ; 8: 728271, 2021.
Article in English | MEDLINE | ID: mdl-34660765

ABSTRACT

Background: Thermostable vaccines greatly improved the reach and impact of large-scale programmes to eliminate infectious diseases such as smallpox, polio, and rinderpest. A study from 2015 demonstrated that the potency of the Nobivac® Rabies vaccine was not impacted following experimental storage at 30°C for 3 months. Whether the vaccine would remain efficacious following storage under more natural, fluctuating temperature conditions remains unknown. We carried out a randomised controlled non-inferiority trial to compare serological responses in dogs following vaccination with doses stored under cold chain conditions with those stored within a locally made Passive Cooling Device ("Zeepot") under fluctuating temperature conditions. Materials and Methods: Nobivac® Rabies vaccine was stored under either cold-chain conditions or within the Zeepot for 2 months. Daily ambient temperatures and temperatures within the Zeepot were recorded every 3 h. Following storage, 412 domestic dogs were randomly assigned to receive either cold-chain or Zeepot stored Nobivac® Rabies vaccine. Baseline and day 28-post vaccination blood samples were collected. Serological analysis using the Fluorescent Antibody Virus Neutralisation assay was carried out with a threshold of 0.5 IU/ml to determine seroconversion. In addition, the impact of dog Body Condition Score, sex, and age on seroconversion was examined. Results: The serological response of dogs vaccinated using Nobivac® Rabies vaccine stored within the Zeepot was not inferior to the response of dogs vaccinated using cold-chain stored vaccine (z = 1.1, df = 313, p-value = 0.25). Indeed, the 28-day post-vaccination group geometric mean titre was 1.8 and 2.0 IU/ml for cold-chain vs. non-cold-chain storage, respectively. Moreover, the percentage of dogs that seroconverted in each arm was almost identical (85%). There was a positive linear trend between Body Condition Score (O.R. 2.2, 95% CI: 1.1-5.1) and seroconversion, suggesting dogs of poor condition may not respond as expected to vaccination. Conclusions: Our study demonstrated the potency of Nobivac® Rabies vaccine is not impacted following storage under elevated fluctuating temperatures within a Zeepot. These results have potentially exciting applications for scaling up mass dog vaccination programmes in low-and-middle income countries, particularly for hard-to-reach populations with limited access to power and cold-chain vaccine storage.

6.
Wellcome Open Res ; 5: 3, 2020.
Article in English | MEDLINE | ID: mdl-32090172

ABSTRACT

Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.

7.
Proc Biol Sci ; 286(1899): 20182772, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30914008

ABSTRACT

Understanding multi-host pathogen maintenance and transmission dynamics is critical for disease control. However, transmission dynamics remain enigmatic largely because they are difficult to observe directly, particularly in wildlife. Here, we investigate the transmission dynamics of canine parvovirus (CPV) using state-space modelling of 20 years of CPV serology data from domestic dogs and African lions in the Serengeti ecosystem. We show that, although vaccination reduces the probability of infection in dogs, and despite indirect enhancement of population seropositivity as a result of vaccine shedding, the vaccination coverage achieved has been insufficient to prevent CPV from becoming widespread. CPV is maintained by the dog population and has become endemic with approximately 3.5-year cycles and prevalence reaching approximately 80%. While the estimated prevalence in lions is lower, peaks of infection consistently follow those in dogs. Dogs exposed to CPV are also more likely to become infected with a second multi-host pathogen, canine distemper virus. However, vaccination can weaken this coupling, raising questions about the value of monovalent versus polyvalent vaccines against these two pathogens. Our findings highlight the need to consider both pathogen- and host-level community interactions when seeking to understand the dynamics of multi-host pathogens and their implications for conservation, disease surveillance and control programmes.


Subject(s)
Dog Diseases/transmission , Lions , Parvoviridae Infections/veterinary , Parvovirus, Canine/physiology , Animals , Bayes Theorem , Dog Diseases/epidemiology , Dogs , Ecosystem , Models, Biological , Parvoviridae Infections/epidemiology , Parvoviridae Infections/transmission , Prevalence , Seroepidemiologic Studies , Tanzania/epidemiology
8.
PLoS One ; 11(11): e0167092, 2016.
Article in English | MEDLINE | ID: mdl-27893866

ABSTRACT

Free-roaming dogs (Canis lupus familiaris) are of public health and conservation concern because of their potential to transmit diseases, such as rabies, to both people and wildlife. Understanding domestic dog population dynamics and how they could potentially be impacted by interventions, such as rabies vaccination, is vital for such disease control efforts. For four years, we measured demographic data on 2,649 free-roaming domestic dogs in four rural villages in Tanzania: two villages with and two without a rabies vaccination campaign. We examined the effects of body condition, sex, age and village on survivorship and reproduction. Furthermore, we compared sources of mortality among villages. We found that adult dogs (>12mos) had higher survival than puppies in all villages. We observed a male-biased sex ratio across all age classes. Overall survival in one non-vaccination village was lower than in the other three villages, all of which had similar survival probabilities. In all villages, dogs in poor body condition had lower survival than dogs in ideal body condition. Sickness and spotted hyena (Crocuta crocuta) predation were the two main causes of dog death. Within vaccination villages, vaccinated dogs had higher survivorship than unvaccinated dogs. Dog population growth, however, was similar in all the villages suggesting village characteristics and ownership practices likely have a greater impact on overall dog population dynamics than vaccination. Free-roaming domestic dogs in rural communities exist in the context of their human owners as well as the surrounding wildlife. Our results did not reveal a clear effect of vaccination programs on domestic dog population dynamics. An investigation of the role of dogs and their care within these communities could provide additional insight for planning and implementing rabies control measures such as mass dog vaccination.


Subject(s)
Demography , Dog Diseases/epidemiology , Ecology , Rabies Vaccines/administration & dosage , Rabies/epidemiology , Animals , Dog Diseases/prevention & control , Dogs , Environment , Female , Humans , Male , Parks, Recreational , Population Dynamics , Rabies/prevention & control , Rabies/transmission , Rabies Vaccines/immunology , Rural Population , Tanzania/epidemiology , Vaccination/veterinary
9.
Vaccine ; 34(46): 5504-5511, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27729174

ABSTRACT

This study provides the first robust data that the antibody response of dogs vaccinated with Nobivac® Rabies vaccine stored for several months at high temperatures (up to 30°C) is not inferior to that of dogs vaccinated with vaccine stored under recommended cold-chain conditions (2-8°C). A controlled and randomized non-inferiority study was carried out comparing the four-week post vaccination serological responses of Tanzanian village dogs inoculated with vaccine which had been stored at elevated temperatures for different periods of time with those of dogs vaccinated with the same product stored according to label recommendations. Specifically, the neutralizing antibody response following the use of vaccine which had been stored for up to six months at 25°C or for three months at 30°C was not inferior to that following the use of cold-chain stored vaccine. These findings provide reassurance that the vaccine is likely to remain efficacious even if exposed to elevated temperatures for limited periods of time and, under these circumstances, it can safely be used and not necessarily destroyed or discarded. The availability of thermotolerant vaccines has been an important factor in the success of several disease control and elimination programs and could greatly increase the capacity of rabies vaccination campaigns to access hard to reach communities in Africa and Asia. We have not confirmed a 3-year duration of immunity for the high temperature stored vaccine, however because annual re-vaccination is usually practiced for dogs presented for vaccination during campaigns in Africa and Asia this should not be a cause for concern. These findings will provide confidence that, for rabies control and elimination programs using this vaccine in low-income settings, more flexible delivery models could be explored, including those that involve limited periods of transportation and storage at temperatures higher than that currently recommended.


Subject(s)
Antibodies, Neutralizing/immunology , Dog Diseases/prevention & control , Rabies Vaccines/immunology , Rabies/veterinary , Vaccine Potency , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Dogs , Drug Storage , Hot Temperature , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Rabies virus/immunology , Tanzania , Thermotolerance , Vaccination/veterinary , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
10.
PLoS Negl Trop Dis ; 9(12): e0004221, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26633821

ABSTRACT

In this study we show that incentives (dog collars and owner wristbands) are effective at increasing owner participation in mass dog rabies vaccination clinics and we conclude that household questionnaire surveys and the mark-re-sight (transect survey) method for estimating post-vaccination coverage are accurate when all dogs, including puppies, are included. Incentives were distributed during central-point rabies vaccination clinics in northern Tanzania to quantify their effect on owner participation. In villages where incentives were handed out participation increased, with an average of 34 more dogs being vaccinated. Through economies of scale, this represents a reduction in the cost-per-dog of $0.47. This represents the price-threshold under which the cost of the incentive used must fall to be economically viable. Additionally, vaccination coverage levels were determined in ten villages through the gold-standard village-wide census technique, as well as through two cheaper and quicker methods (randomized household questionnaire and the transect survey). Cost data were also collected. Both non-gold standard methods were found to be accurate when puppies were included in the calculations, although the transect survey and the household questionnaire survey over- and under-estimated the coverage respectively. Given that additional demographic data can be collected through the household questionnaire survey, and that its estimate of coverage is more conservative, we recommend this method. Despite the use of incentives the average vaccination coverage was below the 70% threshold for eliminating rabies. We discuss the reasons and suggest solutions to improve coverage. Given recent international targets to eliminate rabies, this study provides valuable and timely data to help improve mass dog vaccination programs in Africa and elsewhere.


Subject(s)
Disease Transmission, Infectious/prevention & control , Dog Diseases/prevention & control , Mass Vaccination , Motivation , Rabies Vaccines/administration & dosage , Rabies/prevention & control , Rabies/veterinary , Adult , Animals , Dogs , Humans , Surveys and Questionnaires , Tanzania
11.
Proc Natl Acad Sci U S A ; 112(5): 1464-9, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605919

ABSTRACT

Morbilliviruses cause many diseases of medical and veterinary importance, and although some (e.g., measles and rinderpest) have been controlled successfully, others, such as canine distemper virus (CDV), are a growing concern. A propensity for host-switching has resulted in CDV emergence in new species, including endangered wildlife, posing challenges for controlling disease in multispecies communities. CDV is typically associated with domestic dogs, but little is known about its maintenance and transmission in species-rich areas or about the potential role of domestic dog vaccination as a means of reducing disease threats to wildlife. We address these questions by analyzing a long-term serological dataset of CDV in lions and domestic dogs from Tanzania's Serengeti ecosystem. Using a Bayesian state-space model, we show that dynamics of CDV have changed considerably over the past three decades. Initially, peaks of CDV infection in dogs preceded those in lions, suggesting that spill-over from dogs was the main driver of infection in wildlife. However, despite dog-to-lion transmission dominating cross-species transmission models, infection peaks in lions became more frequent and asynchronous from those in dogs, suggesting that other wildlife species may play a role in a potentially complex maintenance community. Widespread mass vaccination of domestic dogs reduced the probability of infection in dogs and the size of outbreaks but did not prevent transmission to or peaks of infection in lions. This study demonstrates the complexity of CDV dynamics in natural ecosystems and the value of long-term, large-scale datasets for investigating transmission patterns and evaluating disease control strategies.


Subject(s)
Animals, Domestic , Animals, Wild , Distemper Virus, Canine/pathogenicity , Morbillivirus/pathogenicity , Animals , Bayes Theorem , Distemper/transmission , Distemper/virology , Distemper Virus, Canine/physiology , Dogs , Lions , Morbillivirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...