Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Oncogene ; 36(47): 6617-6626, 2017 11 23.
Article in English | MEDLINE | ID: mdl-28783166

ABSTRACT

Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eµ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.


Subject(s)
ADP-ribosyl Cyclase 1/antagonists & inhibitors , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Membrane Glycoproteins/antagonists & inhibitors , MicroRNAs/therapeutic use , ADP-ribosyl Cyclase 1/genetics , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Caspase 7/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase 6/genetics , Down-Regulation , Drug Delivery Systems , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lipids/chemistry , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , MicroRNAs/administration & dosage , MicroRNAs/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Nanoparticles/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins/genetics
2.
Cell Death Dis ; 7: e2071, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26821067

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a B-cell malignancy with a mature phenotype. In spite of its relatively indolent nature, no radical cure is as yet available. CLL is not associated with either a unique cytogenetic or a molecular defect, which might have been a potential therapeutic target. Instead, several factors are involved in disease development, such as environmental signals which interact with genetic abnormalities to promote survival, proliferation and an immune surveillance escape. Among these, PI3-Kinase signal pathway alterations are nowadays considered to be clearly important. The TCL1 gene, an AKT co-activator, is the cause of a mature T-cell leukemia, as well as being highly expressed in all B-CLL. A TCL1 transgenic mouse which reproduces leukemia with a distinct immunophenotype and similar to the course of the human B-CLL was developed several years ago and is widely used by many groups. This is a review of the CLL biology arising from work of many independent investigators who have used TCL1 transgenic mouse model focusing on pathogenetic, microenviroment and therapeutic targets.


Subject(s)
Disease Models, Animal , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Proto-Oncogene Proteins/genetics , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Transgenic , Proto-Oncogene Proteins/biosynthesis , Tumor Microenvironment
3.
Cell Death Differ ; 22(1): 46-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25190143

ABSTRACT

MicroRNAs (miRNAs) constitute a large class of short RNAs (e.g., 20-24 nucleotides in length), whose main function is to posttranscriptionally regulate the expression of protein-coding genes. Their importance in tumorigenesis has been demonstrated over the past decade, and correspondingly, they have emerged as potential therapeutic molecules and targets. Liver cancer is one of the most common neoplastic diseases worldwide, and it currently has a poor prognosis owing to largely ineffective therapeutic options. Liver cancer is also an excellent model for testing miRNA-based therapy approaches as it can be easily targeted with the systemic delivery of oligonucleotides. In recent years, the role of miRNAs in hepatocellular carcinoma (HCC) has been established with molecular studies and the development of animal models. These studies have also provided the basis for evaluating the therapeutic potential of miRNAs, or anti-miRNAs. In general, the safety of miRNAs has been proven and antitumor activity has been observed. Moreover, because of the absence or presence of mild side effects, the prophylactic use of miRNA-based approaches may be foreseen.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Oligodeoxyribonucleotides, Antisense , RNA, Neoplasm , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/therapy , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/metabolism , Oligodeoxyribonucleotides, Antisense/genetics , Oligodeoxyribonucleotides, Antisense/therapeutic use , RNA, Neoplasm/antagonists & inhibitors , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
4.
Cell Death Dis ; 5: e1559, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25476907

ABSTRACT

Once a patient is in septic shock, survival rates drop by 7.6% for every hour of delay in antibiotic therapy. Biomarkers based on the molecular mechanism of sepsis are important for timely diagnosis and triage. Here, we study the potential roles of a panel of cellular and viral miRNAs as sepsis biomarkers. We performed genome-wide microRNA (miRNA) expression profiling in leukocytes from septic patients and nonseptic controls, combined with quantitative RT-PCR in plasmas from two cohorts of septic patients, two cohorts of nonseptic surgical patients and healthy volunteers. Enzyme-linked immunosorbent assay, miRNA transfection and chromatin immunoprecipitation were used to study the effects of Kaposi sarcoma herpes virus (KSHV) miRNAs on interleukin's secretion. Differences related to sepsis etiology were noted for plasma levels of 10 cellular and 2 KSHV miRNAs (miR-K-10b and miR-K-12-12*) between septic and nonseptic patients. All the sepsis groups had high KSHV miRNAs levels compared with controls; Afro-American patients had higher levels of KSHV-miR-K12-12* than non-Afro-American patients. Both KSHV miRNAs were increased on postoperative day 1, but returned to baseline on day 7; they acted as direct agonists of Toll-like receptor 8 (TLR8), which might explain the increased secretion of the IL-6 and IL-10. Cellular and KSHV miRNAs are differentially expressed in sepsis and early postsurgical patients and may be exploited for diagnostic and therapeutic purposes. Increased miR-K-10b and miR-K12-12* are functionally involved in sepsis as agonists of TLR8, forming a positive feedback that may lead to cytokine dysregulation.


Subject(s)
Herpesvirus 8, Human/genetics , MicroRNAs/genetics , Sarcoma, Kaposi/genetics , Sepsis/genetics , Toll-Like Receptor 8/genetics , Wounds and Injuries/genetics , APACHE , Black or African American , Aged , Case-Control Studies , Feedback, Physiological , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Interleukin-6/blood , Interleukin-6/genetics , Interleukin-8/blood , Interleukin-8/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Male , MicroRNAs/blood , Middle Aged , Sarcoma, Kaposi/blood , Sarcoma, Kaposi/ethnology , Sarcoma, Kaposi/mortality , Sepsis/blood , Sepsis/ethnology , Sepsis/mortality , Signal Transduction , Survival Analysis , Toll-Like Receptor 8/blood , Wounds and Injuries/blood , Wounds and Injuries/ethnology , Wounds and Injuries/mortality
5.
Bone Marrow Transplant ; 49(6): 793-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24710569

ABSTRACT

Exact mechanism of action of umbilical cord blood (CB)-derived regulatory T cells (Tregs) in the prevention of GVHD remains unclear. On the basis of selective overexpression of peptidase inhibitor 16 in CB Tregs, we explored the related p53 pathway, which has been shown to negatively regulate miR15a/16 expression. Significantly lower levels of miR15a/16 were observed in CB Tregs when compared with conventional CB T cells (Tcons). In a xenogeneic GVHD mouse model, lower levels of miR15a/16 were also found in Treg recipients, which correlated with a better GVHD score. Forced overexpression of miR15a/16 in CB Tregs led to inhibition of FOXP3 and CTLA4 expression and partial reversal of Treg-mediated suppression in an allogeneic mixed lymphocyte reaction that correlated with the reversal of FOXP3 demethylation in CB Tregs. On the other hand, miR15a/16 knockdown in CB Tcons led to expression of FOXP3 and CTLA4 and suppression of allogeneic lymphocyte proliferation. Using a luciferase-based mutagenesis assay, FOXP3 was determined to be a direct target of miR15a and miR16. We propose that miR15a/16 has an important role in mediating the suppressive function of CB Tregs and these microRNAs may have a 'toggle-switch' function in Treg/Tcon plasticity.


Subject(s)
Fetal Blood/immunology , Fetal Blood/metabolism , Forkhead Transcription Factors/antagonists & inhibitors , Forkhead Transcription Factors/genetics , MicroRNAs/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , CTLA-4 Antigen/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Disease Models, Animal , Fetal Blood/cytology , Forkhead Transcription Factors/immunology , Gene Expression , Gene Knockdown Techniques , Genes, p53 , Glycoproteins/genetics , Glycoproteins/metabolism , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Heterografts , Humans , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Mutagenesis, Site-Directed , T-Lymphocytes, Regulatory/cytology
SELECTION OF CITATIONS
SEARCH DETAIL