Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; 54(2): e2350637, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37990855

ABSTRACT

Due to the lack of biomarkers predictive of response to atezolizumab-bevacizumab, the standard of care for advanced HCC, we analyzed baseline and early on-treatment variation of peripheral lymphocyte populations of 37 prospective patients treated by atezolizumab-bevacizumab and in 15 prospective patients treated by sorafenib or lenvatinib (TKIs). RNAseq analysis followed by RT-PCR validation on patients-derived PBMC was also performed. At first imaging, re-evaluation 13 patients receiving atezolizumab-bevacizumab, showed an objective response, 17 stable disease, while 7 were nonresponders. Baseline CD8+ and CD8+PD-L1+ peripheral lymphocytes were lower in responders versus nonresponders (T-test, p = 0.012 and 0.004, respectively). At 3 weeks, 28 of 30 responders displayed a rise of CD8+PD1+ lymphocytes with a positive mean fold change of 4.35 (±5.6 SD), whereas 6 of 7 nonresponders displayed a negative fold change of 0.89 (±0.84 SD). These changes were not observed in patients treated by TKIs. TRIM56, TRIM16, TRIM64, and Ki67 mRNAs were validated as upregulated in responders versus nonresponders after 3 weeks after treatment start, providing possible evidence of immune activation. Baseline CD8+ and CD8+PD-L1+ peripheral lymphocytes and early changes in CD8+PD1+ lymphocytes predict response to atezolizumab-bevacizumab providing noninvasive markers to complement clinical practice in the very early phases of treatment of HCC patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Bevacizumab/therapeutic use , B7-H1 Antigen , Prospective Studies , Leukocytes, Mononuclear , CD8-Positive T-Lymphocytes , Biomarkers, Tumor , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
4.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955679

ABSTRACT

Liquid biopsy has advantages over tissue biopsy, but also some technical limitations that hinder its wide use in clinical applications. In this study, we aimed to evaluate the usefulness of liquid biopsy for the clinical management of patients with advanced-stage oncogene-addicted non-small-cell lung adenocarcinomas. The investigation was conducted on a series of cases-641 plasma samples from 57 patients-collected in a prospective consecutive manner, which allowed us to assess the benefits and limitations of the approach in a real-world clinical context. Thirteen samples were collected at diagnosis, and the additional samples during the periodic follow-up visits. At diagnosis, we detected mutations in ctDNA in 10 of the 13 cases (77%). During follow-up, 36 patients progressed. In this subset of patients, molecular analyses of plasma DNA/RNA at progression revealed the appearance of mutations in 29 patients (80.6%). Mutations in ctDNA/RNA were typically detected an average of 80 days earlier than disease progression assessed by RECIST or clinical evaluations. Among the cases positive for mutations, we observed 13 de novo mutations, responsible for the development of resistance to therapy. This study allowed us to highlight the advantages and disadvantages of liquid biopsy, which led to suggesting algorithms for the use of liquid biopsy analyses at diagnosis and during monitoring of therapy response.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Circulating Tumor DNA , Lung Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma of Lung/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/pathology , Mutation , Oncogenes , Prospective Studies , RNA
5.
Mol Ther Nucleic Acids ; 29: 538-549, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36035756

ABSTRACT

Palbociclib is in early-stage clinical testing in advanced hepatocellular carcinoma (HCC). Here, we investigated whether the anti-tumor activity of palbociclib, which prevents the CDK4/6-mediated phosphorylation of RB1 but simultaneously activates AKT signaling, could be improved by its combination with a PI3K/AKT/mTOR inhibitor in liver cancer models. The selective pan-AKT inhibitor, MK-2206, or the microRNA-199a-3p were tested in combination with palbociclib in HCC cell lines and in the TG221 HCC transgenic mouse model. The combination palbociclib/MK-2206 was highly effective, but too toxic to be tolerated by mice. Conversely, the combination miR-199a-3p mimics/palbociclib not only induced a complete or partial regression of tumor lesions, but was also well tolerated. After 3 weeks of treatment, the combination produced a significant reduction in number and size of tumor nodules in comparison with palbociclib or miR-199a-3p mimics used as single agents. Moreover, we also reported the efficacy of this combination against sorafenib-resistant cells in vitro and in vivo. At the molecular level, the combination caused the simultaneous decrease of the phosphorylation of both RB1 and of AKT. Our findings provide pre-clinical evidence for the efficacy of the combination miR-199a-3p/palbociclib as anti-HCC treatment or as a new approach to overcome sorafenib resistance.

6.
Mol Ther Nucleic Acids ; 14: 239-250, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30641476

ABSTRACT

Most hepatocellular carcinomas (HCCs) arise in the context of chronic liver disease and/or cirrhosis. Thus, chemoprevention in individuals at risk represents an important but yet unproven approach. In this study, we investigated the ability of microRNA (miRNA)-based molecules to prevent liver cancer development in a cirrhotic model. To this end, we developed a mouse model able to recapitulate the natural progression from fibrosis to HCC, and then we tested the prophylactic activity of an miRNA-based approach in the model. The experiments were carried out in the TG221 transgenic mouse, characterized by the overexpression of miR-221 in the liver and predisposed to the development of liver tumors. TG221 as well as wild-type mice were exposed to the hepatotoxin carbon tetrachloride (CCl4) to induce chronic liver damage. All mice developed liver cirrhosis, but only TG221 mice developed nodular lesions in 100% of cases within 6 months of age. The spectrum of lesions ranged from dysplastic foci to carcinomas. To investigate miRNA-based prophylactic approaches, anti-miR-221 oligonucleotides or miR-199a-3p mimics were administered to TG221 CCl4-treated mice. Compared to control animals, a significant reduction in number, size, and, most significantly, malignant phenotype of liver nodules was observed, thus demonstrating an important prophylactic action of miRNA-based molecules. In summary, in this article, we not only report a simple model of liver cancer in a cirrhotic background but also provide evidence for a potential miRNA-based approach to reduce the risk of HCC development.

7.
Mol Ther Nucleic Acids ; 11: 485-493, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858083

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Prognosis is poor, and therapeutic options are limited. MicroRNAs (miRNAs) have emerged as potential therapeutic molecules against cancer. Here, we investigated the therapeutic efficacy of miR-199a-3p, an miRNA highly expressed in normal liver and downregulated in virtually all HCCs. The therapeutic value of miR-199a-3p mimic molecules was assayed in the TG221 mouse, a transgenic model highly predisposed to the development of liver cancer. Administration of miR-199a-3p mimics in the TG221 transgenic mouse showing liver cancer led to a significant reduction of number and size of tumor nodules compared to control animals. In vivo delivery confirmed protein downregulation of the miR-199a-3p direct targets, mechanistic target of rapamycin (MTOR) and p21 activated kinase 4 (PAK4), ultimately leading to the repression of FOXM1. Remarkably, the anti-tumor activity of miR-199a-3p mimics was comparable to that obtained with sorafenib. These results suggested that miR-199a-3p may be considered a promising HCC therapeutic option.

8.
Clin Cancer Res ; 23(11): 2891-2904, 2017 06 01.
Article in English | MEDLINE | ID: mdl-27903673

ABSTRACT

Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors.Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia.Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo We show that anti-miR-155-DOPC can be considered non-toxic in vivo We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer.Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891-904. ©2016 AACR.


Subject(s)
Antagomirs/administration & dosage , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , MicroRNAs/genetics , Animals , Cell Line, Tumor , Cisplatin/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , MicroRNAs/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
9.
EBioMedicine ; 2(6): 572-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26288818

ABSTRACT

Although numerous studies highlighted the role of Epstein-Barr Virus (EBV) in B-cell transformation, the involvement of EBV proteins or genome in the development of the most frequent adult leukemia, chronic lymphocytic leukemia (CLL), has not yet been defined. We hypothesized that EBV microRNAs contribute to progression of CLL and demonstrated the presence of EBV miRNAs in B-cells, in paraffin-embedded bone marrow biopsies and in the plasma of patients with CLL by using three different methods (small RNA-sequencing, quantitative reverse transcription PCR [q-RT-PCR] and miRNAs in situ hybridization [miRNA-ISH]). We found that EBV miRNA BHRF1-1 expression levels were significantly higher in the plasma of patients with CLL compared with healthy individuals (p < 0 · 0001). Notably, BHRF1-1 as well as BART4 expression were detected in the plasma of either seronegative or seropositive (anti-EBNA-1 IgG and EBV DNA tested) patients; similarly, miRNA-ISH stained positive in bone marrow specimens while LMP1 and EBER immunohistochemistry failed to detect viral proteins and RNA. We also found that BHRF1-1 plasma expression levels were positively associated with elevated beta-2-microglobulin levels and advanced Rai stages and observed a correlation between higher BHRF1-1 expression levels and shorter survival in two independent patients' cohorts. Furthermore, in the majority of CLL cases where BHRF1-1 was exogenously induced in primary malignant B cells the levels of TP53 were reduced. Our findings suggest that EBV may have a role in the process of disease progression in CLL and that miRNA RT-PCR and miRNAs ISH could represent additional methods to detect EBV miRNAs in patients with CLL.


Subject(s)
Herpesvirus 4, Human/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/virology , MicroRNAs/genetics , Viral Proteins/genetics , Disease-Free Survival , Epstein-Barr Virus Nuclear Antigens/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , RNA, Viral/genetics , Tumor Cells, Cultured , Tumor Suppressor Protein p53 , Viral Matrix Proteins/genetics , Viral Proteins/blood , beta 2-Microglobulin/blood
10.
Oncotarget ; 6(23): 19807-18, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26090867

ABSTRACT

The involvement of microRNAs (miRNAs) in chronic lymphocytic leukemia (CLL) pathogenesis suggests the possibility of anti-CLL therapeutic approaches based on miRNAs. Here, we used the Eµ-TCL1 transgenic mouse model, which reproduces leukemia with a similar course and distinct immunophenotype as human B-CLL, to test miR-181b as a therapeutic agent.In vitro enforced expression of miR-181b mimics induced significant apoptotic effects in human B-cell lines (RAJI, EHEB), as well as in mouse Eµ-TCL1 leukemic splenocytes. Molecular analyses revealed that miR-181b not only affected the expression of TCL1, Bcl2 and Mcl1 anti-apoptotic proteins, but also reduced the levels of Akt and phospho-Erk1/2. Notably, a siRNA anti-TCL1 could similarly down-modulate TCL1, but exhibited a reduced or absent activity in other relevant proteins, as well as a reduced effect on cell apoptosis and viability. In vivo studies demonstrated the capability of miR-181b to reduce leukemic cell expansion and to increase survival of treated mice.These data indicate that miR-181b exerts a broad range of actions, affecting proliferative, survival and apoptotic pathways, both in mice and human cells, and can potentially be used to reduce expansion of B-CLL leukemic cells.


Subject(s)
Genetic Therapy/methods , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice, Transgenic , MicroRNAs/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Signal Transduction , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Time Factors , Transfection
11.
Article in English | MEDLINE | ID: mdl-25436097

ABSTRACT

AIM: We evaluated the capability of "microRNA sponges" in sequestering and inhibiting the over-expressed miR-221 in HCC cell lines. BACKGROUND: Advanced hepatocellular carcinoma (HCC) is a serious public health problem, with no effective cure at present. It has been demonstrated that the deregulation of microRNAs expression contributes to tumorigenesis. In HCC, miR-221 was shown to be up-regulated in more than 70% of the cases and was associated with higher tumor stage, metastasis and a shorter time to recurrence after surgery, suggesting an important pathogenic role. A tumor promoting function of miR-221 was proved in a transgenic mouse model, which was predisposed to the development of liver cancers. These findings suggested that miR-221 could represent a potential target for anti-tumor approaches. MATERIAL AND METHODS: Novel adeno and adeno-associated viral vectors (AAVs) were developed: they were genetically modified to drive the expression of multiple binding sites for miR-221, the "miR-221 sponge", which was designed to sequester miR-221 cellular molecules. RESULTS: Analysis of viral vectors activity in HCC cells revealed their capability to reduce miR-221 endogenous levels, which was accompanied by the increase in CDKN1B/ p27 protein, a known target of miR-221. An increase in apoptosis was also measured in Hep3B cells after infection with any of the two viral vectors in comparison with control vectors, with stronger effects induced by adenovirus compared to AAV vectors. CONCLUSION: The depletion of oncogenic microRNAs represents a potential anti-cancer approach that needs to be tested for safety and efficacy. Here, we describe the development of novel "miR-221 sponge" vectors, which can reduce miR-221 activity in vitro and may be used for in vivo delivery.

12.
Clin Cancer Res ; 20(15): 4141-53, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24916701

ABSTRACT

PURPOSE: Despite its indolent nature, chronic lymphocytic leukemia (CLL) remains an incurable disease. To establish the potential pathogenic role of miRNAs, the identification of deregulated miRNAs in CLL is crucial. EXPERIMENTAL DESIGN: We analyzed the expression of 723 mature miRNAs in 217 early-stage CLL cases and in various different normal B-cell subpopulations from tonsils and peripheral blood. RESULTS: Our analyses indicated that CLL cells exhibited a miRNA expression pattern that was most similar to the subsets of antigen-experienced and marginal zone-like B cells. These normal subpopulations were used as reference to identify differentially expressed miRNAs in comparison with CLL. Differences related to the expression of 25 miRNAs were found to be independent from IGHV mutation status or cytogenetic aberrations. These differences, confirmed in an independent validation set, led to a novel comprehensive description of miRNAs potentially involved in CLL. We also identified miRNAs whose expression was distinctive of cases with mutated versus unmutated IGHV genes or cases with 13q, 11q, and 17p deletions and trisomy 12. Finally, analysis of clinical data in relation to miRNA expression revealed that miR26a, miR532-3p, miR146-5p, and miR29c* were strongly associated with progression-free survival. CONCLUSION: This study provides novel information on miRNAs expressed by CLL and normal B-cell subtypes, with implication on the cell of origin of CLL. In addition, our findings indicate a number of deregulated miRNAs in CLL, which may play a pathogenic role and promote disease progression. Collectively, this information can be used for developing miRNA-based therapeutic strategies in CLL.


Subject(s)
B-Lymphocyte Subsets/metabolism , Chromosome Aberrations , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Mutation/genetics , Cells, Cultured , Chromosomes, Human/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Trisomy/genetics
13.
Mol Cancer ; 12(1): 130, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24165569

ABSTRACT

BACKGROUND: The microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables. METHODS: MiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR. RESULTS: We identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer--as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs). CONCLUSIONS: Taken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.


Subject(s)
Breast Neoplasms/metabolism , Erythropoietin/genetics , MicroRNAs/genetics , RNA Interference , Receptor, ErbB-2/metabolism , Receptors, Erythropoietin/genetics , 3' Untranslated Regions , Binding Sites , Breast Neoplasms/pathology , Erythropoietin/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HEK293 Cells , Humans , MCF-7 Cells , Molecular Sequence Annotation , Neoplasm Metastasis , Receptor, ErbB-2/genetics , Receptors, Erythropoietin/metabolism
14.
PLoS One ; 8(9): e73964, 2013.
Article in English | MEDLINE | ID: mdl-24069256

ABSTRACT

The down-regulation of miR-199 occurs in nearly all primary hepatocellular carcinomas (HCCs) and HCC cell lines in comparison with normal liver. We exploited this miR-199 differential expression to develop a conditionally replication-competent oncolytic adenovirus, Ad-199T, and achieve tumor-specific viral expression and replication. To this aim, we introduced four copies of miR-199 target sites within the 3' UTR of E1A gene, essential for viral replication. As consequence, E1A expression from Ad-199T virus was tightly regulated both at RNA and protein levels in HCC derived cell lines, and replication controlled by the level of miR-199 expression. Various approaches were used to asses in vivo properties of Ad-199T. Ad-199T replication was inhibited in normal, miR-199 positive, liver parenchyma, thus resulting in reduced hepatotoxicity. Conversely, the intrahepatic delivery of Ad-199T in newborn mice led to virus replication and fast removal of implanted HepG2 liver cancer cells. The ability of Ad-199T to control tumor growth was also shown in a subcutaneous xenograft model in nude mice and in HCCs arising in immune-competent mice. In summary, we developed a novel oncolytic adenovirus, Ad-199T, which could demonstrate a therapeutic potential against liver cancer without causing significant hepatotoxicity.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , MicroRNAs/genetics , Oncolytic Viruses/genetics , 3' Untranslated Regions , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Viral , Gene Order , Genetic Vectors/administration & dosage , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Mice , Mice, Transgenic , MicroRNAs/metabolism , Oncolytic Virotherapy , RNA Interference , Tumor Burden/genetics , Virus Replication , Xenograft Model Antitumor Assays
15.
Mol Cancer ; 12: 50, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23725032

ABSTRACT

BACKGROUNDS: Approximately 1,000 microRNAs (miRs) are present in the human genome; however, little is known about the regulation of miR transcription. Because miR levels are deregulated in chronic lymphocytic leukemia (CLL) and signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL, we sought to determine whether STAT3 affects the transcription of miR genes in CLL cells. METHODS: We used publically available data from the ENCODE project to identify putative STAT3 binding sites in the promoters of miR genes. Then we transfected CLL cells with STAT3-shRNA or with an empty vector, and to determine which miRs are differentially expressed, we used a miR microarray approach followed by validation of the microarray results for 6 miRs using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: We identified putative STAT3 binding sites in 160 promoter regions of 200 miRs, including miR-21, miR-29, and miR-155, whose levels have been reported to be upregulated in CLL. Levels of 72 miRs were downregulated (n = 63) or upregulated (n = 9). qRT-PCR confirmed the array data in 5 of 6 miRs. CONCLUSIONS: The presence of activated STAT3 has a profound effect on miR expression in CLL cells.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , MicroRNAs/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Binding Sites , Cell Line, Tumor , Humans , Promoter Regions, Genetic , Protein Binding
16.
Front Genet ; 4: 64, 2013.
Article in English | MEDLINE | ID: mdl-23630541

ABSTRACT

microRNA miR-221 is frequently over-expressed in a variety of human neoplasms. Aim of this study was to identify new miR-221 gene targets to improve our understanding on the molecular tumor-promoting mechanisms affected by miR-221. Gene expression profiling of miR-221-transfected-SNU-398 cells was analyzed by the Sylamer algorithm to verify the enrichment of miR-221 targets among down-modulated genes. This analysis revealed that enforced expression of miR-221 in SNU-398 cells caused the down-regulation of 602 mRNAs carrying sequences homologous to miR-221 seed sequence within their 3'UTRs. Pathways analysis performed on these genes revealed their prominent involvement in cell proliferation and apoptosis. Activation of E2F, MYC, NFkB, and ß-catenin pathways was experimentally proven. Some of the new miR-221 target genes, including RB1, WEE1 (cell cycle inhibitors), APAF1 (pro-apoptotic), ANXA1, CTCF (transcriptional repressor), were individually validated as miR-221 targets in SNU-398, HepG2, and HEK293 cell lines. By identifying a large set of miR-221 gene targets, this study improves our knowledge about miR-221 molecular mechanisms involved in tumorigenesis. The modulation of mRNA level of 602 genes confirms the ability of miR-221 to promote cancer by affecting multiple oncogenic pathways.

17.
Hepatology ; 56(3): 1025-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22473819

ABSTRACT

UNLABELLED: MicroRNA-221 (miR-221) is one of the most frequently and consistently up-regulated microRNAs (miRNAs) in human cancer. It has been hypothesized that miR-221 may act as a tumor promoter. To demonstrate this, we developed a transgenic (TG) mouse model that exhibits an inappropriate overexpression of miR-221 in the liver. Immunoblotting and immunostaining confirmed a concomitant down-regulation of miR-221 target proteins. This TG model is characterized by the emergence of spontaneous nodular liver lesions in approximately 50% of male mice and by a strong acceleration of tumor development in 100% of mice treated with diethylnitrosamine. Similarly to human hepatocellular carcinoma, tumors are characterized by a further increase in miR-221 expression and a concomitant inhibition of its target protein-coding genes (i.e., cyclin-dependent kinase inhibitor [Cdkn]1b/p27, Cdkn1c/p57, and B-cell lymphoma 2-modifying factor). To validate the tumor-promoting effect of miR-221, we showed that in vivo delivery of anti-miR-221 oligonucleotides leads to a significant reduction of the number and size of tumor nodules. CONCLUSIONS: This study not only establishes that miR-221 can promote liver tumorigenicity, but it also establishes a valuable animal model to perform preclinical investigations for the use of anti-miRNA approaches aimed at liver cancer therapy.


Subject(s)
Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/physiology , Animals , Male , Mice , Mice, Transgenic
18.
Proc Natl Acad Sci U S A ; 108(12): 4840-5, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383185

ABSTRACT

hsa-mir-483 is located within intron 2 of the IGF2 gene. We have previously shown oncogenic features of miR-483-3p through cooperation with IGF2 or by independently targeting the proapoptotic gene BBC3/PUMA. Here we demonstrate that expression of miR-483 can be induced independently of IGF2 by the oncoprotein ß-catenin through an interaction with the basic helix-loop-helix protein upstream stimulatory transcription factor 1. We also show that ß-catenin itself is a target of miR-483-3p, triggering a negative regulatory loop that becomes ineffective in cells harboring an activating mutation of ß-catenin. These results provide insights into the complex regulation of the IGF2/miR-483 locus, revealing players in the ß-catenin pathway.


Subject(s)
MicroRNAs/metabolism , Mutation , beta Catenin/biosynthesis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Genetic Loci/genetics , HEK293 Cells , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Introns/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...