Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Infect Dis ; 22(1): 170, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35189814

ABSTRACT

BACKGROUND: Pasteurella multocida is a well-known gram-negative facultative anaerobe well known for its ability to cause soft tissue infections following animal bite or scratch. Here we present a case with mycotic aneurysm of the superficial femoral artery due to P. multocida infection. CASE PRESENTATION: A 62 year old male patient presented with worsening right leg pain and swelling. On examination, he was found to have profound swelling and erythema of the right medial thigh and tenderness to palpation. Computerized tomography showed findings suggestive of right femoral pseudoaneurysm with a large right medial thigh hematoma. Blood cultures grew P. multocida. Patient underwent emergent open resection of the mycotic aneurysm and vascular bypass surgery. Intraoperatively, the site was noted to be grossly infected with multiple pockets of pus which were drained and pus cultures grew P. multocida. The diagnosis of P. multocida bacteremia with right femoral mycotic aneurysm and thigh abscess was made. Patient received 6 weeks of intravenous ceftriaxone and recovered. CONCLUSION: Our case is the first report on infection of peripheral vessel with Pasteurella and highlights the importance of prompt surgical intervention and effective antibiotic treatment.


Subject(s)
Aneurysm, False , Aneurysm, Infected , Pasteurella Infections , Aneurysm, False/diagnostic imaging , Aneurysm, False/surgery , Aneurysm, Infected/diagnostic imaging , Aneurysm, Infected/surgery , Animals , Femoral Artery/diagnostic imaging , Femoral Artery/surgery , Hematoma/diagnostic imaging , Hematoma/surgery , Humans , Male , Middle Aged , Pasteurella , Pasteurella Infections/diagnosis , Pasteurella Infections/etiology
2.
N Engl J Med ; 380(20): 1918-1928, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31091373

ABSTRACT

BACKGROUND: In the context of kidney transplantation, genomic incompatibilities between donor and recipient may lead to allosensitization against new antigens. We hypothesized that recessive inheritance of gene-disrupting variants may represent a risk factor for allograft rejection. METHODS: We performed a two-stage genetic association study of kidney allograft rejection. In the first stage, we performed a recessive association screen of 50 common gene-intersecting deletion polymorphisms in a cohort of kidney transplant recipients. In the second stage, we replicated our findings in three independent cohorts of donor-recipient pairs. We defined genomic collision as a specific donor-recipient genotype combination in which a recipient who was homozygous for a gene-intersecting deletion received a transplant from a nonhomozygous donor. Identification of alloantibodies was performed with the use of protein arrays, enzyme-linked immunosorbent assays, and Western blot analyses. RESULTS: In the discovery cohort, which included 705 recipients, we found a significant association with allograft rejection at the LIMS1 locus represented by rs893403 (hazard ratio with the risk genotype vs. nonrisk genotypes, 1.84; 95% confidence interval [CI], 1.35 to 2.50; P = 9.8×10-5). This effect was replicated under the genomic-collision model in three independent cohorts involving a total of 2004 donor-recipient pairs (hazard ratio, 1.55; 95% CI, 1.25 to 1.93; P = 6.5×10-5). In the combined analysis (discovery cohort plus replication cohorts), the risk genotype was associated with a higher risk of rejection than the nonrisk genotype (hazard ratio, 1.63; 95% CI, 1.37 to 1.95; P = 4.7×10-8). We identified a specific antibody response against LIMS1, a kidney-expressed protein encoded within the collision locus. The response involved predominantly IgG2 and IgG3 antibody subclasses. CONCLUSIONS: We found that the LIMS1 locus appeared to encode a minor histocompatibility antigen. Genomic collision at this locus was associated with rejection of the kidney allograft and with production of anti-LIMS1 IgG2 and IgG3. (Funded by the Columbia University Transplant Center and others.).


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA Copy Number Variations , Graft Rejection/genetics , Kidney Transplantation , LIM Domain Proteins/genetics , Adaptor Proteins, Signal Transducing/immunology , Cohort Studies , Genetic Association Studies , Genotype , HLA Antigens/genetics , Histocompatibility Testing , Humans , Immunoglobulin G/blood , LIM Domain Proteins/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Polymorphism, Single Nucleotide , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL