Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 21(5): 2223-2237, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38552144

ABSTRACT

The fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and can accelerate product development by guiding the selection of solution-stable candidates and formulations. The studies reported here investigated the effects of structural modifications on the fibrillation of a 29-residue peptide (PepA) and two sequence modified variants (PepB, PepC). The C-terminus of PepA was amidated, whereas both PepB and PepC retained the carboxylate, and Ser16 in PepA and PepB was substituted with a helix-stabilizing residue, α-aminoisobutyric acid (Aib), in PepC. In thermal denaturation studies by far-UV CD spectroscopy and fibrillation kinetic studies by fluorescence and turbidity measurements, PepA and PepB showed heat-induced conformational changes and were found to form fibrils, whereas PepC did not fibrillate and showed only minor changes in the CD signal. Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed a high degree of protection from HD exchange in mature PepA fibrils and its proteolytic fragments, indicating that most of the sequence had been incorporated into the fibril structure and occurred nearly simultaneously throughout the sequence. The effects of the net peptide charge and formulation pH on fibrillation kinetics were investigated. In real-time stability studies of two formulations of PepA at pH's 7.4 and 8.0, analytical methods detected significant changes in the stability of the formulations at different time points during the study, which were not observed during accelerated studies. Additionally, PepA samples were withdrawn from real-time stability and subjected to additional stress (40 °C, continuous shaking) to induce fibrillation; an approach that successfully amplified oligomers or prefibrillar species previously undetected in a thioflavin T assay. Taken together, these studies present an approach to differentiate and characterize fibrillation risk in structurally related peptides under accelerated and real-time conditions, providing a model for rapid, iterative structural design to optimize the stability of therapeutic peptides.


Subject(s)
Drug Design , Peptides , Peptides/chemistry , Circular Dichroism/methods , Drug Stability , Amino Acid Sequence , Kinetics , Aminoisobutyric Acids/chemistry , Protein Stability , Mass Spectrometry/methods
2.
Anal Chem ; 96(6): 2464-2473, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38306310

ABSTRACT

Lipid nanoparticles (LNPs) are intricate multicomponent systems widely recognized for their efficient delivery of oligonucleotide cargo to host cells. Gaining insights into the molecular properties of LNPs is crucial for their effective design and characterization. However, analysis of their internal structure at the molecular level presents a significant challenge. This study introduces 31P nuclear magnetic resonance (NMR) methods to acquire structural and dynamic information about the phospholipid envelope of LNPs. Specifically, we demonstrate that the 31P chemical shift anisotropy (CSA) parameters serve as a sensitive indicator of the molecular assembly of distearoylphosphatidylcholine (DSPC) lipids within the particles. An analytical protocol for measuring 31P CSA is developed, which can be implemented using either solution NMR or solid-state NMR, offering wide accessibility and adaptability. The capability of this method is demonstrated using both model DSPC liposomes and real-world pharmaceutical LNP formulations. Furthermore, our method can be employed to investigate the impact of formulation processes and composition on the assembly of specifically LNP particles or, more generally, phospholipid-based delivery systems. This makes it an indispensable tool for evaluating critical pharmaceutical properties such as structural homogeneity, batch-to-batch reproducibility, and the stability of the particles.


Subject(s)
Liposomes , Nanoparticles , Reproducibility of Results , Phospholipids , Nanoparticles/chemistry , Magnetic Resonance Spectroscopy , RNA, Small Interfering
3.
Soft Matter ; 20(8): 1736-1745, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38288734

ABSTRACT

Hydrogel microparticles ranging from 0.1-100 µm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 µm and 82 ± 25 µm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.


Subject(s)
Hydrogels , Microgels , Animals , Horses , Hydrogels/chemistry , Liposomes , Microfluidics , Rheology
4.
Mol Pharm ; 19(9): 3267-3278, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35917158

ABSTRACT

Antimicrobial preservatives are used as functional excipients in multidose formulations of biological therapeutics to destroy or inhibit the growth of microbial contaminants, which may be introduced by repeatedly administering doses. Antimicrobial agents can also induce the biophysical instability of proteins and peptides, which presents a challenge in optimizing the drug product formulation. Elucidating the structural basis for aggregation aids in understanding the underlying mechanism and can offer valuable knowledge and rationale for designing drug substances and drug products; however, this remains largely unexplored due to the lack of high-resolution characterization. In this work, we utilize solution nuclear magnetic resonance (NMR) as an advanced biophysical tool to study an acylated 31-residue peptide, acyl-peptide A, and its interaction with commonly used antimicrobial agents, benzyl alcohol and m-cresol. Our results suggest that acyl-peptide A forms soluble octamers in the aqueous solution, which tumble slowly due to an increased molecular weight as measured by diffusion ordered spectroscopy and 1H relaxation measurement. The addition of benzyl alcohol does not induce aggregation of acyl-peptide A and has no chemical shift perturbation in 1H-1H NOESY spectra, suggesting no detectable interaction with the peptide. In contrast, the addition of 1% (w/v) m-cresol results in insoluble aggregates composed of 25% (w/w) peptides after a 24-hour incubation at room temperature as quantified by 1H NMR. Interestingly, 1H-13C heteronuclear single-quantum coherence and 1H-1H total correlation experiment spectroscopy have identified m-cresol and peptide interactions at specific residues, including Met, Lys, Glu, and Gln, suggesting that there may be a combination of hydrophobic, hydrogen bonding, and electrostatic interactions with m-cresol driving this phenomenon. These site-specific interactions have promoted the formation of higher-order oligomerization such as dimers and trimers of octamers, eventually resulting in insoluble aggregates. Our study has elucidated a structural basis of m-cresol-induced self-association that can inform the optimized design of drug substances and products. Moreover, it has demonstrated solution NMR as a high-resolution tool to investigate the structure and dynamics of biological drug products and provide an understanding of excipient-induced peptide and protein aggregation.


Subject(s)
Anti-Infective Agents , Excipients , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Benzyl Alcohol/chemistry , Excipients/chemistry , Peptides , Preservatives, Pharmaceutical/chemistry
5.
J Pharm Sci ; 110(12): 3773-3775, 2021 12.
Article in English | MEDLINE | ID: mdl-34400183

ABSTRACT

Nitrosamines, in the absence of toxicological data, are regarded as potential mutagens and need to be controlled at nanogram levels in drug products. Recent high profile product withdrawals have increased regulatory scrutiny of nitrosamine formation assessments for marketed products and for new drug applications. Formation of nitrosamine in drug product is possible when nitrite and vulnerable amines are present. Nitrite is often present as an impurity in excipients at ppm levels, whereas vulnerable amines, if present, stem mainly from the drug substance or its major impurities. In the event a drug product were to contain a major source of vulnerable amines (such as a moiety in the drug substance), it would be desirable to have an inhibitor which could be added to the formulation to minimize nitrosamine formation.  This work demonstrates, for the first time, that the inhibition of nitrosamine formation in oral solid dosage forms is indeed feasible with suitable inhibitors. Five inhibitors investigated (ascorbic acid, sodium ascorbate, α-tocopherol, caffeic acid, and ferulic acid) showed >80% inhibition when spiked at ∼1 wt% level. This work has also shown the potential use of amino acids (glycine, lysine, histidine) as inhibitors of nitrosamine formation in solution.


Subject(s)
Nitrosamines , Pharmaceutical Preparations , Amines/chemistry , Ascorbic Acid , Nitrites/metabolism , Nitrosamines/metabolism , Nitrosamines/toxicity
6.
J Pharm Sci ; 110(2): 850-859, 2021 02.
Article in English | MEDLINE | ID: mdl-32980392

ABSTRACT

New classes of therapeutic peptides are being developed to prosecute biological targets which have been inaccessible to other modalities. Higher potency and longer half-life peptides have given rise to multiuse injectable formulations that enable convenient, low volume, and self-administered dosing; however, inclusion of antimicrobial preservatives to meet bactericidal requirements can impact other attributes of peptide formulations. Peptide-preservative interactions influencing solution-phase self-association of a non-insulin, linear, palmitoylated 31 amino acid peptide and two structurally similar peptides were assessed via turbidity, intrinsic fluorescence shifts and quenching, isothermal titration calorimetry, and 1H NMR. Meta-cresol and phenol specifically interact with the peptide, result in increased hydrophobicity near the tryptophan residue, and induce conformational changes, while benzyl alcohol does not impact tryptophan fluorescence, demonstrate any interaction enthalpy, or induce conformational changes. These same trends did not hold true for the other palmitoylated peptides evaluated, reinforcing the impacts of unique peptide sequences. Importantly, the presence of benzyl alcohol does increase the physical stability and solubility of the linear, 31 amino acid peptide under salt stress. We report new insights into the physical interactions of peptides with antimicrobial excipients, demonstrating a reversible association phenomenon and highlighting practical implications for formulation design and excipient selection.


Subject(s)
Anti-Infective Agents , Excipients , Peptides , Preservatives, Pharmaceutical , Solubility
7.
J Phys Chem B ; 121(34): 8132-8141, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28762740

ABSTRACT

A principal advantage of magic angle spinning (MAS) NMR spectroscopy lies in its ability to determine molecular structure in a noninvasive and quantitative manner. Accordingly, MAS should be widely applicable to studies of the structure of active pharmaceutical ingredients (API) and formulations. However, the low sensitivity encountered in spectroscopy of natural abundance APIs present at low concentration has limited the success of MAS experiments. Dynamic nuclear polarization (DNP) enhances NMR sensitivity and can be used to circumvent this problem provided that suitable paramagnetic polarizing agent can be incorporated into the system without altering the integrity of solid dosages. Here, we demonstrate that DNP polarizing agents can be added in situ during the preparation of amorphous solid dispersions (ASDs) via spray drying and hot-melt extrusion so that ASDs can be examined during drug development. Specifically, the dependence of DNP enhancement on sample composition, radical concentration, relaxation properties of the API and excipients, types of polarizing agents and proton density, has been thoroughly investigated. Optimal enhancement values are obtained from ASDs containing 1% w/w radical concentration. Both polarizing agents TOTAPOL and AMUPol provided reasonable enhancements. Partial deuteration of the excipient produced 3× higher enhancement values. With these parameters, an ASD containing posaconazole and vinyl acetate yields a 32-fold enhancement which presumably results in a reduction of NMR measurement time by ∼1000. This boost in signal intensity enables the full assignment of the natural abundance pharmaceutical formulation through multidimensional correlation experiments.


Subject(s)
Magnetic Resonance Spectroscopy , Pharmaceutical Preparations/chemistry , Clotrimazole/chemistry , Cyclic N-Oxides/chemistry , Drug Compounding , Propanols/chemistry , Protons , Triazoles/chemistry
8.
J Pharm Sci ; 105(10): 2989-3006, 2016 10.
Article in English | MEDLINE | ID: mdl-27499338

ABSTRACT

Advances in technologies related to the design and manufacture of therapeutic peptides have enabled researchers to overcome the biological and technological challenges that have limited their application in the past. As a result, peptides of increasing complexity have become progressively important against a variety of disease targets. Developing peptide drug products brings with it unique scientific challenges consistent with the unique physicochemical properties of peptide molecules. The identification of the proper characterization tools is required in order to develop peptide formulations with the appropriate stability, manufacturability, and bioperformance characteristics. This knowledge supports the build of critical quality attributes and, ultimately, regulatory specifications. The purpose of this review article is to provide an overview of the techniques that are employed for analytical characterization of peptide drug products. The techniques covered are highlighted in the context of peptide drug product understanding and include chemical and biophysical approaches. Emphasis is placed on summarizing the recent literature experience in the field. Finally, the authors provide regulatory perspective on these characterization approaches and discuss some potential areas for further research in the field.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Delivery Systems/trends , Peptides/analysis , Peptides/therapeutic use , Chemistry, Pharmaceutical/methods , Chromatography, Gas/methods , Chromatography, Gas/trends , Chromatography, Liquid/methods , Chromatography, Liquid/trends , Drug Delivery Systems/methods , Drug Stability , Humans , Peptides/chemistry , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/trends
9.
Philos Trans A Math Phys Eng Sci ; 374(2072)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27298440

ABSTRACT

Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on 'lipid sinks' and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.


Subject(s)
Drug Carriers/chemistry , Drug Liberation , Lipids/chemistry , Magnetite Nanoparticles/chemistry , Models, Chemical , Pharmacology/methods , Cyclosporine/chemistry , Cyclosporine/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Itraconazole/chemistry , Itraconazole/pharmacokinetics , Solubility
10.
Mol Pharm ; 12(5): 1554-63, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25811733

ABSTRACT

Tuberculosis (TB) remains a major global health concern, and new therapies are needed to overcome the problems associated with dosing frequency, patient compliance, and drug resistance. To reduce side effects associated with systemic drug distribution and improve drug concentration at the target site, stable therapeutic nanocarriers (NCs) were prepared and evaluated for efficacy in vitro in Mycobacterium tuberculosis-infected macrophages. Rifampicin (RIF), a current, broad-spectrum antibiotic used in TB therapy, was conjugated by degradable ester bonds to form hydrophobic prodrugs. NCs encapsulating various ratios of nonconjugated RIF and the prodrugs showed the potential ability to rapidly deliver and knockdown intracellular M. tuberculosis by nonconjugated RIF and to obtain sustained release of RIF by hydrolysis of the RIF prodrug. NCs of the novel antibiotic SQ641 and a combination NC with cyclosporine A were formed by flash nanoprecipitation. Delivery of SQ641 in NC form resulted in significantly improved activity compared to that of the free drug against intracellular M. tuberculosis. A NC formulation with a three-compound combination of SQ641, cyclosporine A, and vitamin E inhibited intracellular replication of M. tuberculosis significantly better than SQ641 alone or isoniazid, a current first-line anti-TB drug.


Subject(s)
Antitubercular Agents/pharmacology , Nanoparticles/chemistry , Rifampin/pharmacology , Cyclosporine/chemistry , Isoniazid/chemistry , Isoniazid/pharmacology , Macrophages/microbiology , Mycobacterium tuberculosis/drug effects , Rifampin/chemistry , Vitamin E/chemistry , Vitamin E/pharmacology
11.
Pharm Res ; 30(11): 2891-901, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23893019

ABSTRACT

PURPOSE: While most examples of nanoparticle therapeutics have involved parenteral or IV administration, pulmonary delivery is an attractive alternative, especially to target and treat local infections and diseases of the lungs. We describe a successful dry powder formulation which is capable of delivering nanoparticles to the lungs with good aerosolization properties, high loadings of nanoparticles, and limited irreversible aggregation. METHODS: Aerosolizable mannitol carrier particles that encapsulate nanoparticles with dense PEG coatings were prepared by a combination of ultrasonic atomization and spray freeze drying. This process was contrasted to particle formation by conventional spray drying. RESULTS: Spray freeze drying a solution of nanoparticles and mannitol (2 wt% solids) resulted in particles with an average diameter of 21 ± 1.7 µm, regardless of the fraction of nanoparticles loaded (0-50% of total solids). Spray freeze dried (SFD) powders with a 50% nanoparticle loading had a fine particle fraction (FPF) of 60%. After formulation in a mannitol matrix, nanoparticles redispersed in water to < 1 µm with hand agitation and to < 250 nm with the aid of sonication. Powder production by spray drying was less successful, with low powder yields and extensive, irreversible aggregation of nanoparticles evident upon rehydration. CONCLUSIONS: This study reveals the unique advantages of processing by ultrasonic spray freeze drying to produce aerosol dry powders with controlled properties for the delivery of therapeutic nanoparticles to the lungs.


Subject(s)
Aerosols/chemistry , Drug Carriers/chemistry , Freeze Drying/methods , Mannitol/chemistry , Nanoparticles/administration & dosage , Ultrasonics/methods , Nanoparticles/chemistry , Particle Size , Powders
12.
J Control Release ; 168(1): 41-9, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23419950

ABSTRACT

Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5kgmol(-1) methoxy-terminated PEG corona. While a 5kgmol(-1) methoxy-terminated PEG corona prevents non-specific uptake, a 1.8kgmol(-1) methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associated with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This characterization of nanocarrier uptake and targeting provides promise for optimizing drug delivery to macrophages for TB treatment and establishes a general route for optimizing targeted formulations of nanocarriers for specific delivery at targeted sites.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Animals , Cell Line , Drug Carriers/administration & dosage , Lectins, C-Type/metabolism , Mannose/chemistry , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Nanoparticles/administration & dosage , Polymers/administration & dosage , Receptors, Cell Surface/metabolism
13.
J Control Release ; 162(1): 208-17, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22732478

ABSTRACT

Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1(nu) mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted to correlate in vivo circulation to the protection of the nanocarrier surface from complement binding and activation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative sizes of the hydrophilic and hydrophobic blocks, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG(5k)-PCL(9 k) and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the size of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size. Suggestions for next steps for in vitro measurements are made.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Drug Carriers/metabolism , Lactic Acid/metabolism , Nanostructures/chemistry , Paclitaxel/administration & dosage , Polyesters/metabolism , Polyethylene Glycols/metabolism , Polymers/metabolism , Animals , Drug Carriers/chemistry , Lactic Acid/chemistry , Mice , Mice, Nude , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Polyglycolic Acid/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry
14.
Int J Pharm ; 427(2): 185-91, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22322208

ABSTRACT

This work provides a new understanding of critical process parameters involved in the production of inhalation aerosol particles by ultrasonic spray freeze drying to enable precise control over particle size and aerodynamic properties. A series of highly porous mannitol, lysozyme, and bovine serum albumin (BSA) particles were produced, varying only the solute concentration in the liquid feed, c(s), from 1 to 5 wt%. The particle sizes of mannitol, BSA, and lysozyme powders were independent of solute concentration, and depend only on the drop size produced by atomization. Both mannitol and lysozyme formulations showed a linear relationship between the computed Fine Particle Fraction (FPF) and the square root of c(s), which is proportional to the particle density, ρ, given a constant particle size d(g). The FPF decreased with increasing c(s) from 57.0% to 16.6% for mannitol and 44.5% to 17.2% for lysozyme. Due to cohesion, the BSA powder FPF measured by cascade impaction was less than 10% and independent of c(s). Ultrasonic spray freeze drying enables separate control over particle size, d(g), and aerodynamic size, d(a) which has allowed us to make the first experimental demonstration of the widely accepted rule d(a)=d(g)(ρ/ρ(o))(1/2) with particles of constant d(g), but variable density, ρ (ρ(o) is unit density).


Subject(s)
Aerosols , Freeze Drying/methods , Particulate Matter , Ultrasonics/methods , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Drug Delivery Systems , Lasers , Mannitol/chemistry , Microscopy, Electron, Scanning , Muramidase/chemistry , Nanoparticles , Particle Size , Powders , Serum Albumin, Bovine/chemistry , Spectrophotometry, Ultraviolet , Temperature , X-Ray Diffraction
15.
Adv Drug Deliv Rev ; 63(6): 417-26, 2011 May 30.
Article in English | MEDLINE | ID: mdl-21565233

ABSTRACT

Nanoparticles are a drug delivery platform that can enhance the efficacy of active pharmaceutical ingredients, including poorly-water soluble compounds, ionic drugs, proteins, peptides, siRNA and DNA therapeutics. To realize the potential of these nano-sized carriers, manufacturing processes must be capable of providing reproducible, scalable and stable formulations. Antisolvent precipitation to form drug nanoparticles has been demonstrated as one such robust and scalable process. This review discusses the nucleation and growth of organic nanoparticles at high supersaturation. We present process considerations for controlling supersaturations as well as physical and chemical routes for modifying API solubility to optimize supersaturation and control particle size. We conclude with a discussion of post-precipitation factors which influence nanoparticle stability and efficacy in vivo and techniques for stabilization.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Chemical Precipitation , Drug Carriers/administration & dosage , Nanoparticles/administration & dosage , Particle Size , Solubility
16.
Mol Pharm ; 7(2): 557-64, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20175521

ABSTRACT

Nanoparticles have significant potential in therapeutic applications to improve the bioavailability and efficacy of active drug compounds. However, the retention of nanometer sizes during concentrating or drying steps presents a significant problem. We report on a new concentrating and drying process for poly(ethylene glycol) (PEG) stabilized nanoparticles, which relies upon the unique pH sensitive hydrogen bonding interaction between PEG and polyacid species. In the hydrogen bonding coacervate precipitation (HBCP) process, PEG protected nanoparticles rapidly aggregate into an easily filterable precipitate upon the addition various polyacids. When the resulting solid is neutralized, the ionization of the acid groups eliminates the hydrogen bonded structure and the approximately 100 nm particles redisperse back to within 10% of their original size when poly(acrylic acid) and citric acid are used and 45% when poly(aspartic acid) is used. While polyacid concentrations of 1-5 wt % were used to form the precipitates, the incorporation of the acid into the PEG layer is approximately 1:1 (acid residue):(ethylene oxide unit) in the final dried precipitate. The redispersion of dried beta-carotene nanoparticles protected with PEG-b-poly(lactide-co-glycolide) polymers dried by HBCP was compared with the redispersion of particles dried by freeze-drying with sucrose as a cryprotectant, spray freeze-drying, and normal drying. Freeze-drying with 0, 2, and 12 wt % sucrose solutions resulted in size increases of 350%, 50%, and 6%, respectively. Spray freeze-drying resulted in particles with increased sizes of 50%, but no cryoprotectant and only moderate redispersion energy was required. Conventional drying resulted in solids that could not be redispersed back to nanometer size. The new HBCP process offers a promising and efficient way to concentrate or convert nanoparticle dispersions into a stable dry powder form.


Subject(s)
Desiccation/methods , Nanoparticles/chemistry , Polymers/chemistry , Hydrogen Bonding , Models, Theoretical , Polyethylene Glycols/chemistry
17.
Nano Lett ; 9(6): 2218-22, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19413305

ABSTRACT

Soluble peptides, susceptible to degradation and clearance in therapeutic applications, have been formulated into protected nanoparticles for the first time through the process of kinetically controlled, block copolymer directed rapid precipitation using Flash NanoPrecipitation. Complementary Brownian dynamics simulations qualitatively model the nanoparticle formation process. The simulations corroborate the hypothesis that the size of nanoparticles decreases with increasing supersaturation. Additionally, the influence of the polymer-peptide interaction energy on the efficiency of nanoparticle protection by polymer surface coverage is elucidated in both experiments and simulations.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Peptides/chemistry , Models, Chemical , Particle Size
18.
Expert Rev Clin Pharmacol ; 2(3): 265-82, 2009 May.
Article in English | MEDLINE | ID: mdl-24410705

ABSTRACT

Nanomaterials have been demonstrated as useful tools for molecular imaging, molecular diagnosis and targeted therapy in biomedical research. The main advantages of such nanomaterials are improved circulation times, precise targeting, enhancement of dissolution rates and enhanced contrast. A challenge and opportunity for nanotechnological strategies is that multiple functionalities, such as therapeutics, targeting, imaging and stimuli responsiveness can be achieved within one nanoparticle. Multifunctional nanoparticles are now actively under investigation and are imminent as the next generation of nanoparticles for providing custom and tailored treatment. This review considers contemporary approaches and possible future directions in the emerging area of multifunctional nanoparticles with a special focus on targeted drug delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...