Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biomedicines ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37189655

ABSTRACT

Sacubitril/Valsartan, used for the treatment of heart failure (HF), is a combination of two drugs, an angiotensin receptor inhibitor, and a neprilysin inhibitor, which activates vasoactive peptides. Even though its beneficial effects on cardiac functions have been demonstrated, the mechanisms underpinning these effects remain poorly understood. To achieve more mechanistic insights, we analyzed the profiles of circulating miRNAs in plasma from patients with stable HF with reduced ejection function (HFrEF) and treated with Sacubitril/Valsartan for six months. miRNAs are short (22-24 nt) non-coding RNAs, which are not only emerging as sensitive and stable biomarkers for various diseases but also participate in the regulation of several biological processes. We found that in patients with high levels of miRNAs, specifically miR-29b-3p, miR-221-3p, and miR-503-5p, Sacubitril/Valsartan significantly reduced their levels at follow-up. We also found a significant negative correlation of miR-29b-3p, miR-221-3p, and miR-503-5p with VO2 at peak exercise, whose levels decrease with HF severity. Furthermore, from a functional point of view, miR-29b-3p, miR-221-3p, and miR-503-5p all target Phosphoinositide-3-Kinase Regulatory Subunit 1, which encodes regulatory subunit 1 of phosphoinositide-3-kinase. Our findings support that an additional mechanism through which Sacubitril/Valsartan exerts its functions is the modulation of miRNAs with potentially relevant roles in HFrEF pathophysiology.

2.
Antioxidants (Basel) ; 11(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36139832

ABSTRACT

Human serum albumin (HSA) represents the most abundant plasma protein, with relevant antioxidant activity due to the presence of the sulfhydryl group on cysteine at position 34 (Cys34), the latter being one of the major target sites for redox-dependent modifications leading to the formation of mixed disulfide linkages with low molecular weight thiols. Thiolated forms of HSA (Thio-HSA) may be useful as markers of an unbalanced redox state and as a potential therapeutic target. Indeed, we have previously reported that albumin Cys34 can be regenerated in vitro by N-Acetylcysteine (NAC) through a thiol-disulfide breaking mechanism, with a full recovery of the HSA antioxidant and antiplatelet activities. With this case study, we aimed to assess the ability of NAC to regenerate native mercaptoalbumin (HSA-SH) and the plasma antioxidant capacity in subjects with redox unbalance, after oral and intravenous administration. A placebo-controlled crossover study, single-blinded, was performed on six hypertensive subjects, randomized into two groups, on a one-to-one basis with NAC (600 mg/die) or a placebo, orally and intravenously administered. Albumin isoforms, HSA-SH, Thio-HSA, and glutathione levels were evaluated by means of mass spectrometry. The plasma antioxidant activity was assessed by a fluorimetric assay. NAC, orally administered, significantly decreased the Thio-HSA levels in comparison with the pre-treatment conditions (T0), reaching the maximal effect after 60 min (-24.7 ± 8%). The Thio-HSA reduction was accompanied by a concomitant increase in the native HSA-SH levels (+6.4 ± 2%). After intravenous administration of NAC, a significant decrease of the Thio-HSA with respect to the pre-treatment conditions (T0) was observed, with a maximal effect after 30 min (-68.9 ± 10.6%) and remaining significant even after 6 h. Conversely, no effect on the albumin isoforms was detected with either the orally or the intravenously administered placebo treatments. Furthermore, the total antioxidant activity of the plasma significantly increased after NAC infusion with respect to the placebo (p = 0.0089). Interestingly, we did not observe any difference in terms of total glutathione corrected for hemoglobin, ruling out any effect of NAC on the intracellular glutathione and supporting its role as a disulfide-breaking agent. This case study confirms the in vitro experiments and demonstrates for the first time that NAC is able to regenerate mercaptoalbumin in vivo, allowing us to hypothesize that the recovery of Cys34 content can modulate in vivo oxidative stress and, hopefully, have an effect in oxidative-based diseases.

3.
Biomedicines ; 10(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35740375

ABSTRACT

Circulating microRNAs (miRNA) have been proposed as specific biomarkers for several diseases. Quantitative Real-Time PCR (RT-qPCR) is the gold standard technique currently used to evaluate miRNAs expression from different sources. In the last few years, digital PCR (dPCR) emerged as a complementary and accurate detection method. When dealing with gene expression, the first and most delicate step is nucleic-acid isolation. However, all currently available protocols for RNA extraction suffer from the variable loss of RNA species due to the chemicals and number of steps involved, from sample lysis to nucleic acid elution. Here, we evaluated a new process for the detection of circulating miRNAs, consisting of sample lysis followed by direct evaluation by dPCR in plasma from healthy donors and in the cardiovascular setting. Our results showed that dPCR is able to detect, with high accuracy, low-copy-number as well as highly expressed miRNAs in human plasma samples without the need for RNA extraction. Moreover, we assessed a known myocardial infarction-related miR-133a in acute myocardial infarct patients vs. healthy subjects. In conclusion, our results show the suitability of the extraction-free quantification of circulating miRNAs as disease markers by direct dPCR.

4.
J Cardiovasc Transl Res ; 15(5): 1143-1162, 2022 10.
Article in English | MEDLINE | ID: mdl-35312959

ABSTRACT

Modern therapeutic approaches have led to an improvement in the chances of surviving a diagnosis of cancer. However, this may come with side effects, with patients experiencing adverse cardiovascular events or exacerbation of underlying cardiovascular disease related to their cancer treatment. Rodent models of chemotherapy-induced cardiotoxicity are useful to define pathophysiological mechanisms of cardiac damage and to identify potential therapeutic targets. The key mechanisms involved in cardiotoxicity induced by specific different antineoplastic agents are summarized in this state-of-the-art review, as well as the rodent models of cardiotoxicity by different classes of anticancer drugs, along with the strategies tested for primary and secondary cardioprotection. Current approaches for early detection of cardiotoxicity in preclinical studies with a focus on the application of advanced imaging modalities and biomarker strategies are also discussed. Potential applications of cardiotoxicity modelling in rodents are illustrated in relation to the advancements of promising research topics of cardiotoxicity. Created with BioRender.com.


Subject(s)
Antineoplastic Agents , Cardiovascular Diseases , Neoplasms , Mice , Animals , Cardiotoxicity/diagnosis , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Disease Models, Animal , Antineoplastic Agents/toxicity , Neoplasms/drug therapy , Cardiovascular Diseases/prevention & control
5.
Biomedicines ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35203666

ABSTRACT

Rationale-Calcific aortic valve stenosis (CAVS) is a pathological condition of the aortic valve with a prevalence of 3% in the general population. It is characterized by massive rearrangement of the extracellular matrix, mostly due to the accumulation of fibro-calcific deposits driven by valve interstitial cells (VIC), and no pharmacological treatment is currently available. The aim of this study was to evaluate the effects of P2Y2 receptor (P2RY2) activation on fibro-calcific remodeling of CAVS. Methods-We employed human primary VICs isolated from CAVS leaflets treated with 2-thiouridine-5'-triphosphate (2ThioUTP, 10 µM), an agonist of P2RY2. The calcification was induced by inorganic phosphate (2 mM) and ascorbic acid (50 µg/mL) for 7 or 14 days, while the 2ThioUTP was administered starting from the seventh day. 2ThioUTP was chronically administered for 5 days to evaluate myofibroblastic activation. Results-P2RY2 activation, under continuous or interrupted pro-calcific stimuli, led to a significant inhibition of VIC calcification potential (p < 0.01). Moreover, 2ThioUTP treatment was able to significantly reduce pro-fibrotic gene expression (p < 0.05), as well as that of protein α-smooth muscle actin (p = 0.004). Conclusions-Our data suggest that P2RY2 activation should be further investigated as a pharmacological target for the prevention of CAVS progression, acting on both calcification and myofibroblastic activation.

6.
Int J Mol Sci ; 22(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204756

ABSTRACT

Transcript sequencing is a crucial tool for gaining a deep understanding of biological processes in diagnostic and clinical medicine. Given their potential to study novel complex eukaryotic transcriptomes, long-read sequencing technologies are able to overcome some limitations of short-read RNA-Seq approaches. Oxford Nanopore Technologies (ONT) offers the ability to generate long-read sequencing data in real time via portable protein nanopore USB devices. This work aimed to provide the user with the number of reads that should be sequenced, through the ONT MinION platform, to reach the desired accuracy level for a human cell RNA study. We sequenced three cDNA libraries prepared from poly-adenosine RNA of human primary cardiac fibroblasts. Since the runs were comparable, they were combined in a total dataset of 48 million reads. Synthetic datasets with different sizes were generated starting from the total and analyzed in terms of the number of identified genes and their expression levels. As expected, an improved sensitivity was obtained, increasing the sequencing depth, particularly for the non-coding genes. The reliability of expression levels was assayed by (i) comparison with PCR quantifications of selected genes and (ii) by the implementation of a user-friendly multiplexing method in a single run.


Subject(s)
Nanopore Sequencing , Cells, Cultured , Gene Expression Regulation , Humans , Open Reading Frames/genetics , RNA-Seq
7.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066533

ABSTRACT

Heart failure (HF) is one of the major causes of morbidity and mortality worldwide and represents an escalating problem for healthcare systems. The identification of asymptomatic patients with underlying cardiac subclinical disease would create an opportunity for early intervention and prevention of symptomatic HF. Traditional biomarkers are very useful as diagnostic and prognostic tools in the cardiovascular field; however, their application is usually limited to overt cardiac disease. On the other hand, a growing number of studies is investigating the diagnostic and prognostic potential of new biomarkers, such as micro-RNAs (miRNA), long non-coding RNAs, and exosome cargo, because of their involvement in the early phases of cardiac dysfunction. Unfortunately, their use in asymptomatic phases remains a distant goal. The aim of this review is to gather the current knowledge of old and novel biomarkers in the early diagnosis of cardiac dysfunction in asymptomatic individuals.


Subject(s)
Biomarkers/metabolism , Exosomes/metabolism , Myocardium/metabolism , Myocardium/pathology , RNA, Long Noncoding/genetics , Ventricular Dysfunction, Left/genetics , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism
8.
Diagnostics (Basel) ; 11(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924082

ABSTRACT

The 2019 Coronavirus disease (COVID-19) outbreak had detrimental effects on essential medical services such as organ and tissue donation. Lombardy, one of the most active Italian regions in organ/tissue procurement, has been strongly affected by the COVID-19 pandemic. To date, data concerning the risk of SARS-CoV-2 transmission after tissue transplantation are controversial. Here, we aimed to evaluate the presence/absence of SARS-CoV-2 in different cardiac tissues eligible for transplantation obtained from Lombard donors. We used cardiovascular tissues from eight donors potentially suitable for pulmonary valve transplantation. All donor subjects involved in the study returned negative results for the SARS-CoV-2 RNA molecular tests (quantitative real-time reverse-transcription PCR, qRT-PCR, and chip-based digital PCR) in nasopharyngeal swabs (NPS) or bronchoalveolar lavage (BAL). None of the eight donors included in this study revealed the presence of the SARS-CoV-2 viral genome. However, evaluation of the protein content of pulmonary vein wall (PVW) tissue revealed variable levels of SARS-CoV-2 nucleoprotein signal in all donors. Our study demonstrated for the first time, to the best of our knowledge, that viral nucleoprotein but not viral RNA was present in the examined tissue bank specimens, suggesting the need for caution and in-depth investigations on implantable tissue specimens collected during the COVID-19 pandemic period.

9.
Sci Rep ; 11(1): 5374, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686114

ABSTRACT

Medulloblastoma (MB) is the most common aggressive paediatric brain tumour and, despite the recent progress in the treatments of MB patients, there is still an urgent need of complementary or alternative therapeutic options for MB infants. Cyclin Dependent Kinase inhibitors (CDKi) are at the front-line of novel targeted treatments for multiple cancers and the CDK4/6 specific inhibitor palbociclib has been pre-clinically identified as an effective option for MB cells. Herein, we identified the pan-CDKi dinaciclib as a promising alternative to palbociclib for the suppression of MB cells proliferation. We present evidence supporting dinaciclib's ability to inhibit MB cells in vitro proliferation at considerably lower doses than palbociclib. Sequencing data and pathway analysis suggested that dinaciclib is a potent cell death inducer in MB cells. We found that dinaciclib-triggered apoptosis is triggered by CDK9 inhibition and the resultant reduction in RNA pol II phosphorylation, which leads to the downregulation of the oncogenic marker MYC, and the anti-apoptotic protein MCL-1. Specifically, we demonstrated that MCL-1 is a key apoptotic mediator for MB cells and co-treatment of dinaciclib with BH3 mimetics boosts the therapeutic efficacy of dinaciclib. Together, these findings highlight the potential of multi-CDK inhibition by dinaciclib as an alternative option to CDK4/6 specific inhibition, frequently associated with drug resistance in patients.


Subject(s)
Cell Proliferation/drug effects , Cyclic N-Oxides/pharmacology , Cyclin-Dependent Kinases , Indolizines/pharmacology , Medulloblastoma , Neoplasm Proteins , Protein Kinase Inhibitors/pharmacology , Pyridinium Compounds/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Drug Screening Assays, Antitumor , Humans , Medulloblastoma/drug therapy , Medulloblastoma/enzymology , Medulloblastoma/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism
10.
Int J Mol Sci ; 22(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572602

ABSTRACT

Hematopoietic stem/progenitor cells (HSPCs) participate in cardiovascular (CV) homeostasis and generate different types of blood cells including lymphoid and myeloid cells. Diabetes mellitus (DM) is characterized by chronic increase of pro-inflammatory mediators, which play an important role in the development of CV disease, and increased susceptibility to infections. Here, we aimed to evaluate the impact of DM on the transcriptional profile of HSPCs derived from bone marrow (BM). Total RNA of BM-derived CD34+ stem cells purified from sternal biopsies of patients undergoing coronary bypass surgery with or without DM (CAD and CAD-DM patients) was sequenced. The results evidenced 10566 expressed genes whose 79% were protein-coding genes, and 21% non-coding RNA. We identified 139 differentially expressed genes (p-value < 0.05 and |log2 FC| > 0.5) between the two comparing groups of CAD and CAD-DM patients. Gene Set Enrichment Analysis (GSEA), based on Gene Ontology biological processes (GO-BP) terms, led to the identification of fourteen overrepresented biological categories in CAD-DM samples. Most of the biological processes were related to lymphocyte activation, chemotaxis, peptidase activity, and innate immune response. Specifically, HSPCs from CAD-DM patients displayed reduced expression of genes coding for proteins regulating antibacterial and antivirus host defense as well as macrophage differentiation and lymphocyte emigration, proliferation, and differentiation. However, within the same biological processes, a consistent number of inflammatory genes coding for chemokines and cytokines were up-regulated. Our findings suggest that DM induces transcriptional alterations in HSPCs, which are potentially responsible of progeny dysfunction.


Subject(s)
Cardiovascular Diseases/immunology , Coronary Artery Disease/immunology , Diabetes Complications/immunology , Transcriptome , Aged , Antigens, CD34/immunology , Blood Cells/immunology , Bone Marrow/immunology , Cell Differentiation , Cohort Studies , Female , Gene Expression Profiling , Hematopoietic Stem Cells/immunology , Humans , Inflammation , Lymphocytes/immunology , Male , Middle Aged , Myeloid Cells/immunology , Phenotype
11.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255779

ABSTRACT

The human body is inhabited by around 1013 microbes composing a multicomplex system, termed microbiota, which is strongly involved in the regulation and maintenance of homeostasis. Perturbations in microbiota composition can lead to dysbiosis, which has been associated with several human pathologies. The gold-standard method to explore microbial composition is next-generation sequencing, which involves the analysis of 16S rRNA, an indicator of the presence of specific microorganisms and the principal tool used in bacterial taxonomic classification. Indeed, the development of 16S RNA sequencing allows us to explore microbial composition in several environments and human body districts and fluids, since it has been detected in "germ-free" environments such as blood, plasma, and urine of diseased and healthy subjects. Recently, prokaryotes showed to generate extracellular vesicles, which are known to be responsible for shuttling different intracellular components such as proteins and nucleic acids (including 16S molecules) by protecting their cargo from degradation. These vesicles can be found in several human biofluids and can be exploited as tools for bacterial detection and identification. In this review, we examine the complex link between circulating 16S RNA molecules and bacteria-derived vesicles.


Subject(s)
Cell-Free Nucleic Acids/genetics , Dysbiosis/genetics , Extracellular Vesicles/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Dysbiosis/microbiology , Dysbiosis/pathology , Feces/microbiology , High-Throughput Nucleotide Sequencing , Humans , Microbiota/genetics
12.
Biomedicines ; 8(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322648

ABSTRACT

(1)Background: Chronic heart failure (CHF) contributes to the overall burden of cardiovascular disease. Early identification of at-risk individuals may facilitate the targeting of precision therapies. Plasma microRNAs are promising circulating biomarkers for their implications with cardiac pathologies. In this pilot study, we investigate the possible exploitability of circulating micro-RNAs (miRNAs) to track chronic heart failure (CHF) occurrence, and progression from NYHA class I to IV. (2)Methods: We screened 367 microRNAs using TaqMan microRNA Arrays in plasma samples from healthy controls (HC) and CHF NYHA-class I-to-IV patients (5/group). Validation was performed by singleplex assays on 10 HC and 61 CHF subjects. Differences in the expression of validated microRNAs were evaluated through analysis of covariance (ANCOVA). Associations between N-terminal pro-BNP (NT-proBNP), left ventricular end-diastolic volume (LVEDV) or peak oxygen uptake (VO2 peak) and plasma microRNA were assessed by multivariable linear regression analysis. (3)Results: Twelve microRNAs showed higher expression in CHF patients vs. HC. Seven microRNAs were associated with NT-proBNP concentration; of these, miR-423-5p was also an independent predictor of LVEDV. Moreover, miR-499-5p was a predictor of the VO2 peak. Finally, a cluster of 5 miRNAs discriminated New York Heart Association (NYHA) class-I from HC subjects. (4)Conclusions: Our data suggest that circulating miRNAs have the potential to serve as pathophysiology-based markers of HF status and progression, and as indicators of pre-symptomatic individuals.

13.
Cardiovasc Res ; 116(11): 1820-1834, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32683451

ABSTRACT

In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.


Subject(s)
Antineoplastic Agents/adverse effects , Heart Diseases/chemically induced , Myocytes, Cardiac/drug effects , Neoplasms/drug therapy , Animals , Cardiotoxicity , Cell Communication , Gastrointestinal Microbiome , Gene Expression Regulation , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Humans , Inflammation Mediators/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neoplasms/complications , Neoplasms/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Risk Assessment , Risk Factors , Signal Transduction
14.
J Clin Med ; 9(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403263

ABSTRACT

Anthracyclines are anti-neoplastic drugs presenting cardiotoxicity as a side effect. Cardiac troponins (cTn) and echocardiography are currently used to assess cardiac damage and dysfunction, but early biomarkers identifying patients in need of preventive treatments remain a partially met need. Circulating microRNAs (miRNAs) represent good candidates, so we investigated their possible roles as predictors of troponin elevation upon anthracycline treatment. Eighty-eight female breast cancer patients administered with doxorubicin (DOX) or epirubicin (EPI) were divided into four groups basing on drug type and cTn positive (cTn+) or negative (cTn-) levels: DOX cTn-, DOX cTn+, EPI cTn- and EPI cTn+. Blood was collected at baseline, during treatment, and at follow-up. We identified plasma miRNAs of interest by OpenArray screening and single assay validation. Our results showed miR-122-5p, miR-499a-5p and miR-885-5p dysregulation in DOX patients at T0, identifying a signature separating, with good accuracy, DOX cTn- from DOX cTn+. No miRNAs showed differential expression in EPI subjects. Conversely, an anthracycline-mediated modulation (regardless of cTn) was observed for miR-34a-5p, -122-5p and -885-5p. Our study indicates specific circulating miRNAs as possible prediction markers for cardiac troponin perturbation upon anthracycline treatment. Indeed, our findings hint at the possible future use of plasma miRNAs to predict the cardiac responsiveness of patients to different anticancer agents.

15.
Biomed Pharmacother ; 110: 1-8, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30453253

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is a chemotherapeutic drug limited in its usefulness by an adverse side effect, cardiotoxicity. The mechanisms leading to this detrimental occurrence are not completely clear, and lately many authors focused their attention on the possible role of microRNAs (miRNAs), small regulators of cardiovascular functions, in this phenomenon. Notably, these molecules recently emerged also as potential circulating biomarkers of several cardiac diseases. Thus, the aim of this study was the simultaneous investigation of circulating and cardiac tissue miRNAs expression upon DOX treatment in vivo. METHODS: Twenty C57BL/6 female mice were administered with 24 mg/Kg cumulative dose of DOX or saline (CTRL) for 2 weeks. Echocardiography was performed at baseline and at the end of treatment (T1). Plasma and heart samples were collected at T1, separating atria from left (LV) and right (RV) ventricles, and miRNAs expression was tested by RT-qPCR-based arrays. All putatively DOX-regulated candidates were then validated by single assays in vivo and then evaluated also in murine immortalized cardiomyocytes (HL-1) treated with 1 µM DOX for 24 h. In the end, bioinformatics target prediction was performed for all DOX-miRNAs. RESULTS: Cardiotoxicity onset was diagnosed upon impairment of six cardiac functional parameters in DOX-treated mice at T1. Samples collection, followed by screening and validation steps, identified eleven miRNAs dysregulated by the drug in plasma, while seven resulted as altered in separate heart chambers. Interestingly, miR-34a-5p and miR-451a showed a dysregulation in both plasma and tissue samples of DOX-administered animals, whereas five additional miRNAs presented chamber specific modulation. Of note, in vitro experiments showed a very modest overlap with in vivo results. Bioinformatics prediction analysis performed on miR-34a-5p and miR-451a identified several putative targets presenting no significant association with cardiotoxicity. Anyhow, the same analyses, conducted by combining all miRNAs regulated by DOX in each heart chamber, evidenced a possible dysregulation of the adherens junctions gene network, known to be involved in the onset and progression of dilated cardiomyopathy, an established detrimental side effect of the drug. CONCLUSIONS: This is the first work investigating miRNAs regulation by DOX both in plasma and heart districts of treated animals. Our results indicate a strong association of miR-34a-5p and miR-451a to DOX-induced cardiotoxicity. In addition, the observed altered expression of diverse miRNAs in separated cardiac chambers hints at a specific response to the drug, implying the existence of different players and pathways leading to dysfunction onset.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cardiotoxins/toxicity , Doxorubicin/toxicity , MicroRNAs/biosynthesis , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Cardiotoxicity/blood , Cardiotoxicity/pathology , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myocytes, Cardiac/pathology
16.
Heart Rhythm ; 16(3): 470-477, 2019 03.
Article in English | MEDLINE | ID: mdl-30267792

ABSTRACT

Blood, serum and plasma represent accessible sources of data about physiological and pathologic status. In arrhythmogenic cardiomyopathy (ACM), circulating nucleated cells are routinely used for detection of germinal genetic mutations. In addition, different biomarkers have been proposed for diagnostic purposes and for monitoring disease progression, including inflammatory cytokines, markers of myocardial dysfunction and damage, and microRNAs. This review summarizes the current information that can be retrieved from the blood of ACM patients and considers the future prospects. Improvements in current knowledge of circulating factors may provide noninvasive means to simplify and improve the diagnosis, prognosis prediction, and management of ACM patients.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/blood , Arrhythmogenic Right Ventricular Dysplasia/pathology , Arrhythmogenic Right Ventricular Dysplasia/etiology , Humans
17.
RNA Biol ; 15(10): 1268-1272, 2018.
Article in English | MEDLINE | ID: mdl-30252594

ABSTRACT

Circulating microRNAs (miRNAs) are considered as reliable candidates for biomarker discovery. RNA-Sequencing has become the most suitable technique to accurately quantify the miRNAome. However, RNA-Sequencing relies on several technical passages before reaching the final-end. HTG EdgeSeq technology, thanks to the abrogation of RNA extraction step, allows productivity enhancement by reducing the number of hands-on steps, the time for sample preparation and, therefore, the costs. We found a strong correlation between qPCR and dPCR with HTG (Pearson's coefficient of 0.93 and 0.94, respectively). In conclusion, we showed that HTG EdgeSeq, performed on human plasma specimens without RNA extraction, is reliable, allows the simultaneous screening of more than 2,000 miRNAs, and thus, it could be applied to biomarker discovery in large cohorts.


Subject(s)
Biomarkers/blood , Circulating MicroRNA/blood , MicroRNAs/blood , Sequence Analysis, RNA , Circulating MicroRNA/genetics , Humans , MicroRNAs/genetics
18.
Dis Markers ; 2018: 8395651, 2018.
Article in English | MEDLINE | ID: mdl-30627229

ABSTRACT

BACKGROUND: Cardiotoxicity is a detrimental side effect of the anticancer drug doxorubicin (DOX), characterized by progressive heart dysfunction. Circulating microRNAs (miRNAs) are recognized as potential biomarkers of cardiac disease; thus, we aimed to investigate their association with late cardiotoxicity in an animal model of disease. METHODS: Twenty C57BL/6 female mice were administered with 24 mg/kg cumulative dose of DOX or saline during 2 weeks, followed by a recovery period of one month (T42). Echocardiography was performed at baseline and at T42, and plasma samples were collected at T42. The selection of all miRNAs of interest was conducted by literature overview and by screening, followed by RT-qPCR validation. Results. The analysis of cardiac function at T42 evidenced five DOX-treated animals indistinguishable (NoTox) from controls (CTRLs), while four presented heart impairment (Tox). Our analyses identified eight dysfunction-associated plasma miRNAs. In particular, seven miRNAs were found downregulated in comparison to CTRLs, miR-1-3p, miR-122-5p, miR-127-3p, miR-133a-3p, miR-215-5p, miR-455-3-p, and miR-499a-5p. Conversely, miR-34a-5p showed increased levels in Tox plasma samples. Noteworthy, we determined a cluster composed of miR-1-3p, miR-34a-5p, miR-133a-3p, and miR-499a-5p that distinguished with high-accuracy Tox from NoTox mice. CONCLUSION: This is the first study indicating that, similarly to what is observed in patients, DOX-administered animals present a differential cardiac response to treatment. Moreover, our results indicate the presence of specific plasma miRNAs whose expression reflect the presence of cardiac dysfunction in response to drug-induced injury.


Subject(s)
Cardiotoxicity/diagnostic imaging , Circulating MicroRNA/genetics , Doxorubicin/adverse effects , Genetic Markers , Animals , Cardiotoxicity/genetics , Disease Models, Animal , Echocardiography , Female , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Multigene Family
19.
Antioxid Redox Signal ; 28(12): 1137-1143, 2018 04 20.
Article in English | MEDLINE | ID: mdl-28938845

ABSTRACT

As no studies before now have thoroughly investigated the risk associated with the exposure to low-dose ionizing radiations in patients undergoing catheter ablation (CA), we aimed to evaluate the oxidative and DNA damage in 59 CA patients (10 of whom received N-acetylcysteine (NAC) before the procedure). A burst of oxidized/reduced glutathione ratio was observed 3 hours after procedure that was diminished by NAC administration. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) concentrations, index of oxidative DNA damage, showed a peak 24 hours after CA. A positive correlation between 8-OHdG peak and fluoroscopy time and a negative correlation among 8-OHdG decrease (from the peak to 48 hours after CA) and all procedure parameters were found. Furthermore, DNA tail percentages (which reflect the extent and the number of DNA strand breaks) positively correlated with 8-OHdG concentrations. This study evaluates for the first time the kinetic of oxidative damage in patients undergoing CA procedure. Our findings raise the question of whether 8-OHdG can be used as a circulating biomarker of DNA oxidative damage induced by low-dose ionizing radiations in different clinical settings. Antioxid. Redox Signal. 28, 1137-1143.


Subject(s)
Catheter Ablation/adverse effects , DNA Damage/physiology , DNA/metabolism , Fluoroscopy/adverse effects , Oxidative Stress/physiology , 8-Hydroxy-2'-Deoxyguanosine , Acetylcysteine/administration & dosage , Aged , Deoxyguanosine/administration & dosage , Deoxyguanosine/analogs & derivatives , Female , Humans , Male , Middle Aged , Oxidation-Reduction
20.
Heart Fail Rev ; 23(1): 109-122, 2018 01.
Article in English | MEDLINE | ID: mdl-28944400

ABSTRACT

Cardiotoxicity is a well-known side effect of doxorubicin (DOX), but the mechanisms leading to this phenomenon are still not completely clear. Prediction of drug-induced dysfunction onset is difficult and is still largely based on detection of cardiac troponin (cTn), a circulating marker of heart damage. In the last years, several investigations focused on the possible involvement of microRNAs (miRNAs) in DOX-induced toxicity in vitro, with contrasting results. Recently, several groups employed animal models to mimic patient's condition, investigate the biological pathways perturbed by DOX, and identify diagnostic markers of cardiotoxicity. We reviewed the results from several studies investigating cardiac miRNAs expression in rodent models of DOX-treatment. We also discussed the data from two publications indicating the possible use of circulating miRNA as biomarkers of DOX-induced cardiotoxicity. Unfortunately, limited information was derived from these studies, as selection methods of candidate-miRNAs and heterogeneity in cardiotoxicity assessment greatly hampered the novelty and robustness of the findings. Nevertheless, at least one circulating miRNA, miR-1, showed a good potential as early biomarker of drug-mediated cardiac dysfunction onset. The use of animal models to investigate DOX-induced cardiotoxicity surely helps narrowing the gap between basic research and clinical practice. Despite this, several issues, including selection of relevant miRNAs and less-than-optimal assessment of cardiotoxicity, greatly limited the results obtained so far. Nonetheless, the association of patients-based studies with the use of preclinical models may be the key to address the many unanswered questions regarding the pathophysiology and early detection of cardiotoxicity.


Subject(s)
Cardiomyopathies/chemically induced , Cardiotoxicity/genetics , Doxorubicin/adverse effects , MicroRNAs/genetics , Neoplasms/drug therapy , Animals , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/therapeutic use , Cardiomyopathies/genetics , Cardiotoxicity/metabolism , Doxorubicin/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...