Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Brain ; 146(7): 3049-3062, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36730021

ABSTRACT

Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.


Subject(s)
MicroRNAs , Neuralgia , Humans , RNA, Messenger , Neuralgia/genetics , Neuralgia/metabolism , Epidermis/metabolism , MicroRNAs/genetics , Epidermal Cells/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism
3.
Pain ; 163(7): e882-e887, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34799533

ABSTRACT

ABSTRACT: Mutations in the alpha subunit of voltage-gated sodium channel 1.7 (NaV1.7), encoded by SCN9A gene, play an important role in the regulation of nociception and can lead to a wide range of clinical outcomes, ranging from extreme pain syndromes to congenital inability to experience pain. To expand the phenotypic and genotypic spectrum of SCN9A-related channelopathies, we describe the proband, a daughter born from consanguineous parents, who had pain insensitivity, diminished temperature sensation, foot burns, and severe loss of nociceptive nerve fibers in the epidermis. Next-generation sequencing of SCN9A (NM_002977.3) revealed a novel homozygous substitution (c.377+7T>G) in the donor splice site of intron 3. As the RNA functional testing is challenging, the in silico analysis is the first approach to predict possible alterations. In this case, the computational analysis was unable to identify the splicing consensus and could not provide any prediction for splicing defects. The affected intron indeed belongs to the U12 type, a family of introns characterised by noncanonical consensus at the splice sites, accounting only for 0.35% of all human introns, and is not included in most of the training sets for splicing prediction. A functional study on proband RNA showed different aberrant transcripts, where exon 3 was missing and an intron fragment was included. A quantification study using real-time polymerase chain reaction showed a significant reduction of the NaV1.7 canonical transcript. Collectively, these data widen the spectrum of SCN9A-related insensitivity to pain by describing a mutation causing NaV1.7 deficiency, underlying the nociceptor dysfunction, and highlight the importance of molecular investigation of U12 introns' mutations despite the silent prediction.


Subject(s)
Pain Insensitivity, Congenital , Alternative Splicing , Humans , Introns/genetics , Mutation/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain/genetics , Pain Insensitivity, Congenital/genetics , RNA
4.
J Peripher Nerv Syst ; 23(3): 202-206, 2018 09.
Article in English | MEDLINE | ID: mdl-29978519

ABSTRACT

Congenital insensitivity to pain (CIP) is a rare autosomal recessive disorder presenting with a spectrum of clinical features caused by mutations in different genes. A 10-year-old girl with CIP, hyposmia and hypogeusia, and her unaffected twin and parents underwent next generation sequencing of SCN9A exons and flanking splice sites. Transcript analysis from whole blood successfully assayed the effect of the mutation on the mRNA splicing by polymerase chain reaction amplification on cDNA and Sanger sequencing. We identified the novel splicing variant c.1108-2A>G compound with the p.Arg896Gln (c.2687G>A) missense mutation previously described in a homozygous patient. The new intronic variant was predicted to induce exon 10 skipping. Conversely, SCN9A mRNA assay demonstrated its partial deletion with a loss of 46 nucleotides causing a premature stop codon in position p.Gln369 (NP_002968). Genetic analysis showed that the two variants were biallelic, being the mother and brother heterozygous carriers of the missense mutation, and the father heterozygous for the splicing mutation. Skin biopsy showed lack of Meissner's corpuscles, loss of epidermal nociceptors and normal autonomic organ innervation. We report a novel splicing mutation and provide clues on its pathogenic effect, broadening the spectrum of genotypes and phenotypes associated to CIP.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain Insensitivity, Congenital/genetics , Child , Female , Genotype , Heterozygote , Humans , Mutation , Phenotype
5.
Neurobiol Aging ; 40: 192.e7-192.e11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26925509

ABSTRACT

Autosomal dominant Alzheimer's disease (AD) is caused by mutations in amyloid precursor protein, presenilin 1 (PSEN1), and presenilin 2 genes and is mostly associated with early-onset form of AD (EOAD), whereas very few mutations were also found in late-onset AD (LOAD) cases. Because of the clinical overlapping between AD and other degenerative dementias such as frontotemporal dementias, a wide-spectrum genetic analysis should be envisaged in the differential diagnosis of this group of disorders. We used next-generation sequencing techniques to analyze 10 genes involved in dementia on a cohort of 20 EOAD and 20 LOAD cases. We found 5 rare coding variants (frequency <1%). PSEN1 H214N mutation, identified in a case of familial EOAD and PSEN1 R220P, found in a case of familial LOAD, are predicted to be pathogenic. These findings confirm the contribution of PSEN1 genetic variants also to LOAD, underlining the need of extending the genetic screening of presenilin mutations to LOAD patients. Two variants in microtubule-associated protein tau and 1 in progranulin appeared to be benign polymorphisms, showing no major contribution of these genes to AD.


Subject(s)
Alzheimer Disease/genetics , Exome/genetics , Genetic Association Studies , Mutation , Presenilin-1/genetics , Sequence Analysis, DNA/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
6.
Neurobiol Aging ; 38: 215.e1-215.e12, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652843

ABSTRACT

GRN, the gene coding for the progranulin (PGRN) protein, was recognized as a gene linked to frontotemporal lobar degeneration (FTLD). The first mutations identified were null mutations giving rise to haploinsufficiency. Missense mutations were subsequently detected, but only a small subset has been functionally investigated. We identified missense mutations (C105Y, A199V, and R298H) in FTLD cases with family history and/or with low plasma PGRN levels. The aim of this study was to determine their pathogenicity. We performed functional studies, analyzing PGRN expression, secretion, and cleavage by elastase. GRN C105Y affected both secretion and elastase cleavage, likely representing a pathogenic mutation. GRN A199V did not alter the physiological properties of PGRN and GRN R298H produced only moderate effects on PGRN secretion, indicating that their pathogenicity is uncertain. In the absence of strong segregation data and neuropathological examinations, genetic, biomarker, and functional studies can be applied to an algorithm to assess the likelihood of pathogenicity for a mutation. This information can improve our understanding of the complex mechanisms by which GRN mutations lead to FTLD.


Subject(s)
Frontotemporal Lobar Degeneration/genetics , Genetic Association Studies , Intercellular Signaling Peptides and Proteins/genetics , Mutation, Missense/genetics , Adult , Aged , Aged, 80 and over , Cellobiose/analogs & derivatives , Cohort Studies , Female , Frontotemporal Lobar Degeneration/pathology , Gene Dosage , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/analysis , Middle Aged , Progranulins
7.
Am J Hum Genet ; 91(5): 942-9, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23122588

ABSTRACT

Microphthalmia with linear skin lesions (MLS) is an X-linked dominant male-lethal disorder associated with mutations in holocytochrome c-type synthase (HCCS), which encodes a crucial player of the mitochondrial respiratory chain (MRC). Unlike other mitochondrial diseases, MLS is characterized by a well-recognizable neurodevelopmental phenotype. Interestingly, not all clinically diagnosed MLS cases have mutations in HCCS, thus suggesting genetic heterogeneity for this disorder. Among the possible candidates, we analyzed the X-linked COX7B and found deleterious de novo mutations in two simplex cases and a nonsense mutation, which segregates with the disease, in a familial case. COX7B encodes a poorly characterized structural subunit of cytochrome c oxidase (COX), the MRC complex IV. We demonstrated that COX7B is indispensable for COX assembly, COX activity, and mitochondrial respiration. Downregulation of the COX7B ortholog (cox7B) in medaka (Oryzias latipes) resulted in microcephaly and microphthalmia that recapitulated the MLS phenotype and demonstrated an essential function of complex IV activity in vertebrate CNS development. Our results indicate an evolutionary conserved role of the MRC complexes III and IV for the proper development of the CNS in vertebrates and uncover a group of mitochondrial diseases hallmarked by a developmental phenotype.


Subject(s)
Electron Transport Complex IV/genetics , Microphthalmos/genetics , Mitochondrial Diseases/genetics , Mutation , Amino Acid Sequence , Amino Acid Substitution , Animals , Base Sequence , Cell Line , Female , Gene Expression Regulation , Genes, X-Linked , Genotype , Humans , Lyases/genetics , Microphthalmos/metabolism , Microphthalmos/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Molecular Sequence Data , Oryzias/genetics , Oryzias/metabolism , Pedigree , Phenotype , Skin/pathology
8.
Hum Mol Genet ; 21(24): 5294-305, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22983956

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.


Subject(s)
Central Nervous System/enzymology , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Neurodegenerative Diseases/enzymology , Oxidative Stress/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Central Nervous System/metabolism , Humans , Membrane Potentials/genetics , Membrane Potentials/physiology , Mice , Mice, Knockout , Mitochondria/genetics , Neurodegenerative Diseases/genetics , Oxidative Stress/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...