Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 391(Pt 1): 33-40, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-15929723

ABSTRACT

The mammalian Rh (Rhesus) protein family belongs to the Amt/Mep (ammonia transporter/methylammonium permease)/Rh superfamily of ammonium transporters. Whereas RhCE, RhD and RhAG are erythroid specific, RhBG and RhCG are expressed in key organs associated with ammonium transport and metabolism. We have investigated the ammonium transport function of human RhBG and RhCG by comparing intracellular pH variation in wild-type and transfected HEK-293 (human embryonic kidney) cells and MDCK (Madin-Darby canine kidney) cells in the presence of ammonium (NH4+/NH3) gradients. Stopped-flow spectrofluorimetry analysis, using BCECF [2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein] as a pH-sensitive probe, revealed that all cells submitted to inwardly or outwardly directed ammonium gradients exhibited rapid alkalinization or acidification phases respectively, which account for ammonium movements in transfected and native cells. However, as compared with wild-type cells known to have high NH3 lipid permeability, RhBG- and RhCG-expressing cells exhibited ammonium transport characterized by: (i) a five to six times greater kinetic rate-constant; (ii) a weak temperature-dependence; and (iii) reversible inhibition by mercuric chloride (IC50: 52 microM). Similarly, when subjected to a methylammonium gradient, RhBG- and RhCG-expressing cells exhibited kinetic rate constants greater than those of native cells. However, these constants were five times higher for RhBG as compared with RhCG, suggesting a difference in substrate accessibility. These results, indicating that RhBG and RhCG facilitate rapid and low-energy-dependent bi-directional ammonium movement across the plasma membrane, favour the hypothesis that these Rh glycoproteins, together with their erythroid homologue RhAG [Ripoche, Bertrand, Gane, Birkenmeier, Colin and Cartron (2005) Proc. Natl. Acad. Sci. U.S.A. 101, 17222-17227] constitute a family of NH3 channels in mammalian cells.


Subject(s)
Cation Transport Proteins/metabolism , Glycoproteins/metabolism , Kidney/cytology , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Quaternary Ammonium Compounds/metabolism , Animals , Biological Transport , Cation Transport Proteins/genetics , Cell Line , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Dogs , Flow Cytometry , Glycoproteins/genetics , Humans , Hydrogen-Ion Concentration , Kinetics , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mercuric Chloride/pharmacology , Methylamines/metabolism , Mutagenesis, Site-Directed , Substrate Specificity
2.
Blood ; 100(3): 1038-47, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12130520

ABSTRACT

In most cases, the lack of Rh in Rh(null) red cells is associated with RHAG gene mutations. We explored the role of RhAG in the surface expression of Rh. Nonerythroid HEK293 cells, which lack Rh and RhAG, or erythroid K562 cells, which endogenously express RhAG but not Rh, were transfected with RhD and/or RhAG cDNAs using cytomegalovirus (CMV) promoter-based expression vectors. In HEK293 cells, a low but significant expression of RhD was obtained only when RhAG was expressed at a high level. In K562 cells, as expected from the opposite effects of the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) on erythroid and CMV promoters, the levels of endogenous RhAG and recombinant RhD transcripts were substantially decreased and enhanced upon TPA treatment of RhD-transfected cells (K562/RhD), respectively. However, flow cytometry and fluorescence microscopy analysis revealed a decreased cell-surface expression of both RhAG and RhD proteins. Conversely, TPA treatment of RhAG-transfected cells increased both the transcript and surface expression levels of RhAG. When K562/RhD cells were cotransfected by the RhAG cDNA, the TPA-mediated induction of recombinant RhAG and RhD transcription was associated with an increased membrane expression of both RhAG and RhD proteins. These results demonstrate the role of RhAG as a strictly required posttranscriptional factor regulating Rh membrane expression. In addition, because the postulated 2:2 stoichiometry between Rh and RhAG observed in the native red cell membrane could not be obtained in cotransfected K562 cells, our study also suggests that as yet unidentified protein(s) might be involved for optimal membrane expression of Rh.


Subject(s)
Antigens, Surface/drug effects , Blood Proteins , Membrane Glycoproteins/physiology , Rh-Hr Blood-Group System/metabolism , Antigens, Surface/chemistry , Antigens, Surface/metabolism , Flow Cytometry , Gene Expression Regulation , Humans , K562 Cells , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microscopy, Fluorescence , Protein Transport/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rh-Hr Blood-Group System/chemistry , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic/drug effects , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL