Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Clin Genet ; 94(2): 252-258, 2018 08.
Article in English | MEDLINE | ID: mdl-29700810

ABSTRACT

Inherited bone marrow failure syndromes (IBMFS) are caused by mutations in genes involved in genomic stability. Although they may be recognized by the association of typical clinical features, variable penetrance and expressivity are common, and clinical diagnosis is often challenging. DNAJC21, which is involved in ribosome biogenesis, was recently linked to bone marrow failure. However, the specific phenotype and natural history remain to be defined. We correlate molecular data, phenotype, and clinical history of 5 unreported affected children and all individuals reported in the literature. All patients present features consistent with IBMFS: bone marrow failure, growth retardation, failure to thrive, developmental delay, recurrent infections, and skin, teeth or hair abnormalities. Additional features present in some individuals include retinal abnormalities, pancreatic insufficiency, liver cirrhosis, skeletal abnormalities, congenital hip dysplasia, joint hypermobility, and cryptorchidism. We suggest that DNAJC21-related diseases constitute a distinct IBMFS, with features overlapping Shwachman-Diamond syndrome and Dyskeratosis congenita, and additional characteristics that are specific to DNAJC21 mutations. The full phenotypic spectrum, natural history, and optimal management will require more reports. Considering the aplastic anemia, the possible increased risk for leukemia, and the multisystemic features, we provide a checklist for clinical evaluation at diagnosis and regular follow-up.


Subject(s)
Abnormalities, Multiple/genetics , Anemia, Aplastic/genetics , Bone Marrow Diseases/genetics , Genomic Instability/genetics , HSP40 Heat-Shock Proteins/genetics , Hemoglobinuria, Paroxysmal/genetics , Abnormalities, Multiple/physiopathology , Anemia, Aplastic/diagnosis , Anemia, Aplastic/pathology , Anemia, Aplastic/physiopathology , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/physiopathology , Bone Marrow Failure Disorders , Child, Preschool , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/physiopathology , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/physiopathology , Female , Founder Effect , Hemoglobinuria, Paroxysmal/diagnosis , Hemoglobinuria, Paroxysmal/physiopathology , Humans , Infant , Lipomatosis/genetics , Lipomatosis/physiopathology , Male , Mutation , Phenotype , Ribosomes/genetics , Shwachman-Diamond Syndrome , Telomere/genetics
3.
Clin Genet ; 81(2): 128-41, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21496010

ABSTRACT

Despite a wide range of clinical tools, the etiology of mental retardation and multiple congenital malformations remains unknown for many patients. Array-based comparative genomic hybridization (aCGH) has proven to be a valuable tool in these cases, as its pangenomic coverage allows the identification of chromosomal aberrations that are undetectable by other genetic methods targeting specific genomic regions. Therefore, aCGH is increasingly used in clinical genetics, both in the postnatal and the prenatal settings. While the diagnostic yield in the postnatal population has been established at 10-12%, studies investigating fetuses have reported variable results. We used whole-genome aCGH to investigate fetuses presenting at least one major malformation detected on ultrasound, but for whom standard genetic analyses (including karyotype) failed to provide a diagnosis. We identified a clinically significant chromosomal aberration in 8.2% of tested fetuses (4/49), and a result of unclear clinical significance in 12.2% of tested fetuses (6/49). Our results document the value of whole-genome aCGH as a prenatal diagnostic tool and highlight the interpretation difficulties associated with copy number variations of unclear significance.


Subject(s)
Abnormalities, Multiple/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Karyotype , Abnormalities, Multiple/diagnosis , Chromosome Aberrations , Fetus , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Prenatal Diagnosis , Reproducibility of Results
4.
Can Hosp ; 43(5): 48-51, 1966 May.
Article in English | MEDLINE | ID: mdl-5932180
SELECTION OF CITATIONS
SEARCH DETAIL
...