Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(22)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37306956

ABSTRACT

Ultraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-. The O- radical undergoes reversible proton transfer with water to generate ·OH. Both ·OH and O- oxidize the NO2- to ·NO2 radicals. The reactions of ·OH occur at solution diffusion limits, which are influenced by the nature of the dissolved cations and anions. Here, we systematically varied the alkali metal cation, spanning the range from strongly to weakly hydrating ions, and measured the production of NO·, ·OH, and ·NO2 radicals during UV photolysis of alkaline nitrite solutions using electron paramagnetic resonance spectroscopy with nitromethane spin trapping. Comparing the data for the different alkali cations revealed that the nature of the cation had a significant effect on production of all three radical species. Radical production was inhibited in solutions with high charge density cations, e.g., lithium, and promoted in solutions containing low charge density cations, e.g., cesium. Through complementary investigations with multinuclear single pulse direct excitation nuclear magnetic resonance (NMR) spectroscopy and pulsed field gradient NMR diffusometry, cation-controlled solution structures and extent of NO2- solvation were determined to alter the initial yields of ·NO and ·OH radicals as well as alter the reactivity of NO2- toward ·OH, impacting the production of ·NO2. The implications of these results for the retrieval and processing of low-water, highly alkaline solutions that comprise legacy radioactive waste are discussed.

2.
Inorg Chem ; 61(38): 14987-14996, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36099562

ABSTRACT

The aqueous hydration structure of the Bi3+ ion is probed using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) simulations of ion-water clusters and condensed-phase solutions. Anomalous features in the EXAFS spectra are found to be associated with a highly asymmetric first-solvent water shell. The aqueous chemistry and structure of the Bi3+ ion are dramatically controlled by the water stabilization of a lone-pair electronic state involving the mixed 6s and 6p orbitals. This leads to a distinct multimodal distribution of water molecules in the first shell that are separated by about 0.2 Å. The lone-pair structure is stabilized by a collective response of multiple waters that are localized near the lone-pair anti-bonding site. The findings indicate that the lone-pair stereochemistry of aqueous Bi3+ ions plays a major role in the binding of water and ligands in aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL