Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(23): 11174-11186, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38770663

ABSTRACT

This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a hierarchical structure containing a large portion of graphitic zones which contribute to the catalyst stability. They also had a high electrochemically active site density reaching 1.47 × 1019 sites g-1 for SAFe_M_P1AP2 and 1.14 × 1019 sites g-1 for SEFe_M_P1AP2, explaining the difference in performance in fuel cell measurements. These findings underscore the potential impact of a controlled materials design for advancing green energy applications.

2.
Chempluschem ; : e202300709, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683651

ABSTRACT

Chelators are widely used in conservation treatments to remove metal stains from marble, travertine, and limestone surfaces. In the current review the chemical aspects underlying the use of chelators for the removal of copper and iron stains from built heritage are described and clear criteria for the selection of the most efficient stain removal treatment are given. The main chelator structural features are outlined and the operating conditions for effective metal stain removal (pH, time of application, etc.) discussed, with a particular emphasis on the ability to form stable metal complexes, the high selectivity towards the metal that should be removed, and the high sustainability for the environment. Dense matrices often host chelators for higher effectiveness, and further research is required to clarify their role in the cleaning process. Then, relevant case studies of copper and iron stain removal are discussed. On these bases, the most effective chelators for copper and stain removal are indicated, providing chemists and conservation scientists with scientific support for conservation operations on stone works of art and opening the way to the synthesis of new chelators.

3.
Materials (Basel) ; 17(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38591399

ABSTRACT

Hydrophobicity, olephobicity, hemophobicity, amphiphobicity, omniphobicity, icephobicity [...].

4.
Gels ; 9(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37888383

ABSTRACT

Ladder-like poly(methacryloxypropyl)-silsesquioxanes (LPMASQ) are photocurable Si-based gels characterized by a double-stranded structure that ensures superior thermal stability and mechanical properties than common organic polymers. In this work, these attractive features were exploited to produce, in combination with alumina nanoparticles (NPs), both unmodified and functionalized with methacryloxypropyl-trimethoxysilane (MPTMS), LPMASQ/Al2O3 composites displaying remarkable thermal conductivity. Additionally, we combined LPMASQ with polybutadiene (PB) to produce hybrid nanocomposites with the addition of functionalized Al2O3 NPs. The materials underwent thermal stability, structural, and morphological evaluations via thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Fourier transform infrared spectroscopy (FTIR), and solid-state nuclear magnetic resonance (NMR). Both blending PB with LPMASQ and surface functionalization of nanoparticles proved to be effective strategies for incorporating a higher ceramic filler amount in the matrices, resulting in significant increases in thermal conductivity. Specifically, a 113.6% increase in comparison to the bare matrix was achieved at relatively low filler content (11.2 vol%) in the presence of 40 wt% LPMASQ. Results highlight the potential of ladder-like silsesquioxanes in the field of thermally conductive polymers and their applications in heat dissipation for flexible electronic devices.

5.
Materials (Basel) ; 16(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37629869

ABSTRACT

In recent years, significant efforts have been made in view of a transition from a linear to a circular economy, where the value of products, materials, resources, and waste is maintained as long as possible in the economy. The re-utilization of industrial and agricultural waste into value-added products, such as nanostructured siliceous materials, has become a challenging topic as an effective strategy in waste management and a sustainable model aimed to limit the use of landfill, conserve natural resources, and reduce the use of harmful substances. In light of these considerations, nanoporous silica has attracted attention in various applications owing to the tunable pore dimensions, high specific surface areas, tailorable structure, and facile post-functionalization. In this review, recent progress on the synthesis of siliceous materials from different types of waste is presented, analyzing the factors influencing the size and morphology of the final product, alongside different synthetic methods used to impart specific porosity. Applications in the fields of wastewater/gas treatment and catalysis are discussed, focusing on process feasibility in large-scale productions.

6.
Polymers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904448

ABSTRACT

Sepiolite clay is a natural filler particularly suitable to be used with polysaccharide matrices (e.g., in starch-based bio-nanocomposites), increasing their attractiveness for a wide range of applications, such as packaging. Herein, the effect of the processing (i.e., starch gelatinization, addition of glycerol as plasticizer, casting to obtain films) and of the sepiolite filler amount on the microstructure of starch-based nanocomposites was investigated by SS-NMR (solid-state nuclear magnetic resonance), XRD (X-ray diffraction) and FTIR (Fourier-transform infrared) spectroscopy. Morphology, transparency and thermal stability were then assessed by SEM (scanning electron microscope), TGA (thermogravimetric analysis) and UV-visible spectroscopy. It was demonstrated that the processing method allowed to disrupt the rigid lattice structure of semicrystalline starch and thus obtain amorphous flexible films, with high transparency and good thermal resistance. Moreover, the microstructure of the bio-nanocomposites was found to intrinsically depend on complex interactions among sepiolite, glycerol and starch chains, which are also supposed to affect the final properties of the starch-sepiolite composite materials.

7.
Mar Drugs ; 21(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36976196

ABSTRACT

Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans' exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic-inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.


Subject(s)
Chitosan , Animals , Chitosan/chemistry , Biocompatible Materials/chemistry , Chitin/chemistry , Polysaccharides/chemistry , Crustacea , Tissue Engineering
8.
Langmuir ; 38(50): 15662-15671, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36480813

ABSTRACT

The present study reports on the synthesis of a new alkoxysilane-bearing light-responsive cinnamyl group and its application as a surface functionalization agent for the development of SiO2 nanoparticles (NPs) with photoreversible tails. In detail, cinnamic acid (CINN) was activated with N-hydroxysuccinimide (NHS) to obtain the corresponding NHS-ester (CINN-NHS). Subsequently, the amine group of 3-aminopropyltriethoxysilane (APTES) was acylated with CINN-NHS leading to the generation of a novel organosilane, CINN-APTES, which was then exploited for decorating SiO2 NPs. The covalent bond to the silica surface was confirmed by solid state NMR, whereas thermogravimetric analysis unveiled a functionalization degree much higher compared to that achieved by a conventional double-step post-grafting procedure. In light of these intriguing results, the strategy was successfully extended to naturally occurring sepiolite fibers, widely employed as fillers in technological applications. Finally, a preliminary proof of concept of the photoreversibility of the obtained SiO2@CINN-APTES system has been carried out through UV diffuse reflectance. The overall outcomes prove the consistency and the versatility of the methodological protocol adopted, which appears promising for the design of hybrid NPs to be employed as building blocks for photoresponsive materials with the ability to change their molecular structure and subsequent properties when exposed to different light stimuli.


Subject(s)
Multifunctional Nanoparticles , Nanoparticles , Silicon Dioxide/chemistry , Propylamines/chemistry , Nanoparticles/chemistry
9.
Nano Lett ; 22(21): 8509-8518, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36315593

ABSTRACT

Lithium metal batteries (LMBs) will be a breakthrough in automotive applications, but they require the development of next-generation solid-state electrolytes (SSEs) to stabilize the anode interface. Polymer-in-ceramic PEO/TiO2 nanocomposite SSEs show outstanding properties, allowing unprecedented LMBs durability and self-healing capabilities. However, the mechanism underlying the inhibition/delay of dendrite growth is not well understood. In fact, the inorganic phase could act as both a chemical and a mechanical barrier to dendrite propagation. Combining advanced in situ and ex situ experimental techniques, we demonstrate that oligo(ethylene oxide)-capped TiO2, although chemically inert toward lithium metal, imparts SSE with mechanical and dynamical properties particularly favorable for application. The self-healing characteristics are due to the interplay between mechanical robustness and high local polymer mobility which promotes the disruption of the electric continuity of the lithium dendrites (razor effect).

10.
Phys Chem Chem Phys ; 24(35): 21198-21209, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36040124

ABSTRACT

The development of hybrid nanoscintillators is hunted for the implementation of modern detection technologies, like in high energy physics, homeland security, radioactive gas sensing, and medical imaging, as well as of the established therapies in radiation oncology, such as in X-ray activated photodynamic therapy. Engineering of the physico-chemical properties of nanoparticles (NPs) enables the manufacture of hybrids in which the conjugation of inorganic/organic components leads to increased multifunctionality and performance. However, the optimization of the properties of nanoparticles in combination with the use of ionizing radiation is not trivial: a complete knowledge on the structure, composition, physico-chemical features, and scintillation property relationships in hybrid nanomaterials is pivotal for any applications exploiting X-rays. In this paper, the design of hybrid nanoscintillators based on ZnO grown onto porous SiO2 substrates (ZnO/SiO2) has been performed in the view to create nanosystems potentially suitable in X-ray activated photodynamic therapy. Indeed, cytotoxic porphyrin dyes with increasing concentrations have been anchored on ZnO/SiO2 nanoparticles through amino-silane moieties. Chemical and structural analyses correlated with photoluminescence reveal that radiative energy transfer between ZnO and porphyrins is the principal mechanism prompting the excitation of photosensitizers. The use of soft X-ray excitation results in a further sensitization of the porphyrin emission, due to augmented energy deposition promoted by ZnO in the surroundings of the chemically bound porphyrin. This finding unveils the cruciality of the design of hybrid nanoparticles in ruling the efficacy of the interaction between ionizing radiation and inorganic/organic moieties, and thus of the final nanomaterial performances towards the foreseen application.


Subject(s)
Nanoparticles , Porphyrins , Zinc Oxide , Luminescence , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Zinc Oxide/chemistry
11.
Top Curr Chem (Cham) ; 380(1): 2, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34786587

ABSTRACT

Photocatalytic chemical transformations in the presence of irradiated TiO2 are generally considered in terms of interfacial electron transfer. However, more elusive energy-transfer-driven reactions have been also hypothesized to occur, mainly on the basis of the indirect evidence of detected reaction products whose existence could not be justified simply by electron transfer. Unlike in homogeneous and colloidal systems, where energy transfer mechanisms have been investigated deeply for several organic syntheses, understanding of similar processes in heterogeneous systems is at only a nascent level. However, this gap of knowledge can be filled by considering the important achievements of synthetic heterogeneous photocatalysis, which bring the field closer to industrial exploitation. The present manuscript summarizes the main findings of previous literature reports and, also on the basis of some novel experimental evidences, tentatively proposes that the energy transfer in TiO2 photocatalysis could possess a Förster-like nature.


Subject(s)
Electrons , Titanium , Catalysis , Energy Transfer
12.
ACS Appl Bio Mater ; 4(11): 7800-7810, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34805780

ABSTRACT

Magnetic resonance imaging (MRI) is one of the most sophisticated diagnostic tools that is routinely used in clinical practice. Contrast agents (CAs) are commonly exploited to afford much clearer images of detectable organs and to reduce the risk of misdiagnosis caused by limited MRI sensitivity. Currently, only a few gadolinium-based CAs are approved for clinical use. Concerns about their toxicity remain, and their administration is approved only under strict controls. Here, we report the synthesis and validation of a manganese-based CA, namely, Mn@HFn-RT. Manganese is an endogenous paramagnetic metal able to produce a positive contrast like gadolinium, but it is thought to result in less toxicity for the human body. Mn ions were efficiently loaded inside the shell of a recombinant H-ferritin (HFn), which is selectively recognized by the majority of human cancer cells through their transferrin receptor 1. Mn@HFn-RT was characterized, showing excellent colloidal stability, superior relaxivity, and a good safety profile. In vitro experiments confirmed the ability of Mn@HFn-RT to efficiently and selectively target breast cancer cells. In vivo, Mn@HFn-RT allowed the direct detection of tumors by positive contrast enhancement in a breast cancer murine model, using very low metal dosages and exhibiting rapid clearance after diagnosis. Hence, Mn@HFn-RT is proposed as a promising CA candidate to be developed for MRI.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Animals , Apoferritins , Breast Neoplasms/diagnostic imaging , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Manganese , Mice
13.
Soft Matter ; 17(41): 9434-9446, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34611686

ABSTRACT

"Hairy" nanoparticles (HNPs), i.e. inorganic NPs functionalized with polymer chains, are promising building blocks for the synthesis of advanced nanocomposite (NC) materials having several technological applications. Recent evidence shows that HNPs self-organize in a variety of anisotropic structures, resulting in an improvement of the functional properties of the materials, in which are embedded. In this paper, we propose a three-step colloidal synthesis of spherical SiO2-HNPs, with controlled particle morphology and surface chemistry. In detail, the SiO2 core, synthesized by a modified Stöber method, was first functionalized with a short-chain amino-silane, which acts as an anchor, and then covered by maleated polybutadiene (PB), a rubbery polymer having low glass transition temperature, rarely considered until now. An extensive investigation by a multi-technique analysis demonstrates that the synthesis of SiO2-HNPs is simple, scalable, and potentially applicable to different kind of NPs and polymers. Morphological analysis shows the overall distribution of SiO2-HNPs with a certain degree of spatial organization, suggesting that the polymer coating induces a modification of NP-NP interactions. The role of the surface PB brushes in influencing the special arrangement of SiO2-HNPs was observed also in cis-1,4-polybutadiene (cis-PB), since the resulting NC exhibited the particle packing in "string-like" superstructures. This confirms the tendency of SiO2-HNPs to self-assemble and create alternative structures in polymer NCs, which may impart them peculiar functional properties.

14.
Ind Eng Chem Res ; 60(28): 10180-10192, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34483477

ABSTRACT

ZnO is a worldwide used activator for a rubber vulcanization process, which promotes fast curing kinetics and high cross-linking densities of rubber nanocomposites (NCs). However, its extended use together with leaching phenomena occurring during the production and life cycle of rubber products, especially tires, entails potential environmental risks, as ecotoxicity toward aquatic organisms. Pushed by this issue, a novel activator was developed, which introduces highly dispersed and active zinc species in the vulcanization process, reducing the amount of employed ZnO and keeping high the curing efficiency. The activator is constituted by Zn(II) single sites, anchored on the surface of SiO2 nanoparticles (NPs) through the coordination with functionalizing amino silane groups. It behaves as a double-function material, acting at the same time as a rubber reinforcing filler and a curing activator. The higher availability and reactivity of the single-site Zn(II) centers toward curative agents impart faster kinetics and higher efficiency to the vulcanization process of silica/isoprene NCs, compared to conventionally used ZnO activators. Moreover, the NCs show a high cross-linking degree and improved dynamic mechanical properties, despite the remarkably lower amount of zinc employed than that normally used for rubber composites in tires. Finally, the structural stability of Zn(II) single sites during the curing reactions and in the final materials may represent a turning point toward the elimination of zinc leaching phenomena.

15.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200899

ABSTRACT

The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers' incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler's loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.

16.
Nanomaterials (Basel) ; 10(10)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036427

ABSTRACT

This study addresses the relationship between material morphology (size, growth parameters and interfaces) and optical emissions in ZnO through an experimental approach, including the effect of different material dimensions from bulk to nano-size, and different excitations, from optical sources to ionizing radiation. Silica supported ZnO nanoparticles and ligand capped ZnO nanoparticles are synthesized through a sol-gel process and hot injection method, respectively. Their optical properties are investigated by radioluminescence, steady-state and time-resolved photoluminescence, and compared to those of commercial micrometric powders and of a bulk single crystal. The Gaussian spectral reconstruction of all emission spectra highlights the occurrence of the same emission bands for all samples, comprising one ultraviolet excitonic peak and four visible defect-related components, whose relative intensities and time dynamics vary with the material parameters and the measurement conditions. The results demonstrate that a wide range of color outputs can be obtained by tuning synthesis conditions and size of pure ZnO nanoparticles, with favorable consequences for the engineering of optical devices based on this material.

17.
Cont Lens Anterior Eye ; 42(5): 487-491, 2019 10.
Article in English | MEDLINE | ID: mdl-31519352

ABSTRACT

PURPOSE: The aim was to develop a method to assess the electrostatic properties of human tear samples, and to evaluate their modifications induced by the wear of contact lenses (CLs). METHOD: The barrier method was developed for the measurement of the isoelectric point (IEP) on relatively small quantities. The method was applied to compare three groups: tears (TNW) of non-wearers, tears (TW_etaf) of regular wearers of etafilcon A CLs, and tears (TW_omaf) of regular wearers of omafilcon A CLs. Zeta potential (ζ) as a function of pH was measured by a Zetasizer Nano ZS90 (Malvern Instruments) on 40%-diluted samples, obtained by mixing 57 µL of tears of different subjects of the same group with 85 µL of HCl aqueous solution. IEP was deduced as the pH at which ζ is zero, i.e. the net electric charge on tear constituents being neutralized. RESULTS: Within an error of about 0.05, IEPs were found to be 2.90 (TNW), 2.80 (TW_omaf), and 3.16 (TW_etaf). On average, a lower H+ concentration is needed to neutralize the surface charge of the tear components of etafilcon A wearers, compared to both TNW and TW_omaf. CONCLUSION: IEP measurements on tear samples of wearers of different types of CLs are proposed in order to enhance the knowledge on the modifications of the profile of charged species in tears. The TW_etaf results, compared to those of the other groups, are compatible with an increase, due to the wear of etafilcon A CLs, of the relative concentration of high-IEP proteins.


Subject(s)
Contact Lenses, Hydrophilic , Methacrylates , Tears/chemistry , Adolescent , Adult , Electric Conductivity , Humans , Hydrogen-Ion Concentration , Isoelectric Point , Prosthesis Fitting , Tears/physiology , Young Adult
18.
Phys Chem Chem Phys ; 21(11): 6021-6032, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30810130

ABSTRACT

The chemical groups present at the surface of graphite have been thought for a long time to be mainly responsible for its catalytic activity in the oxygen reduction reaction. Recently, it was proposed that the surface defects of graphite also significantly contribute to promote this reaction. Although the behaviour of surface defects has been reported, only few comments have been dedicated to their involvement in the mechanism and the possible intermediate species in the oxygen reduction reaction. Herein, we aim to present a more detailed explanation of the catalytic activity of graphite particles based on the structure of their defects and their size. Structural, spectroscopic and magnetic investigation (X-ray diffraction, Raman and electron spin resonance) and electrochemical measurements were performed to describe the nature of the defects and their aptitude to transfer electrons. Computational description supplied precise details of the energy of the different defects and their ability to promote the reduction, also suggesting the structure of the intermediate adduct in the oxygen reduction. The results indicated that molecular oxygen preferentially interacts with graphite defects, which involve the π-electron system and accumulation of the spin density on the edges of the grains, in particular, on the zig-zag edges present on ball-milled graphite. This promotes the reactivity of this nanomaterial. Furthermore, the activation increases by decreasing the particle size.

19.
Nanomaterials (Basel) ; 9(1)2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30602665

ABSTRACT

Global industry is showing a great interest in the field of sustainability owing to the increased attention for ecological safety and utilization of renewable materials. For the scientific community, the challenge lies in the identification of greener synthetic approaches for reducing the environmental impact. In this context, we propose the preparation of novel biocomposites consisting of natural rubber latex (NRL) and sepiolite (Sep) fibers through the latex compounding technique (LCT), an ecofriendly approach where the filler is directly mixed with a stable elastomer colloid. This strategy favors a homogeneous dispersion of hydrophilic Sep fibers in the rubber matrix, allowing the production of high-loaded sepiolite/natural rubber (Sep/NR) without the use of surfactants. The main physicochemical parameters which control Sep aggregation processes in the aqueous medium were comprehensively investigated and a flocculation mechanism was proposed. The uniform Sep distribution in the rubber matrix, characteristic of the proposed LCT, and the percolative filler network improved the mechanical performances of Sep/NR biocomposites in comparison to those of analogous materials prepared by conventional melt-mixing. These outcomes indicate the suitability of the adopted sustainable procedure for the production of high-loaded clay⁻rubber nanocomposites with remarkable mechanical features.

20.
J Colloid Interface Sci ; 512: 609-617, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29101902

ABSTRACT

Organic-inorganic nanobuilding blocks (NBBs) based on silsesquioxanes (SSQs) have potential applications as nanofillers, thermal stabilizers, and rheological modifiers, which can improve thermomechanical properties of polymer hosts. The possibility to tune both siloxane structure and pendant groups can promote compatibilization and peculiar interactions with a plethora of polymers. However, the control on SSQs molecular architecture and functionalities is usually delicate and requires careful synthetic details. Moreover, investigating the influence of NBBs loading and structure on the hybrid interface and, in turn, on the polymer chains mobility and mechanical properties, may be challenging, especially for low-loaded materials. Herein, we describe the preparation and characterization of polybutadiene (PB) nanocomposites using as innovative fillers thiol-functionalized SSQs nanobuilding blocks (SH-NBBs), with both tailorable functionality and structure. Swelling experiments and, more clearly, solid-state NMR, enlightened a remarkable effect of SH-NBBs on the molecular structure and mobility of the polymeric chains, envisaging the occurrence of chemical interactions at the hybrid interface. Finally, thermal and DMTA analyses revealed that nanocomposites, even containing very low filler loadings (i.e. 1, 3 wt%), exhibited enhanced thermomechanical properties, which seem to be connected not only to the loading, but also to the peculiar cage or ladder-like architecture of SH-NBBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...