Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
JBMR Plus ; 8(6): ziae057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764790

ABSTRACT

Arterial media calcification or pathological deposition of calcium-phosphate crystals in the vessel wall contributes significantly to the high mortality rate observed in patients with CKD. Extracellular nucleotides (ie, ATP or UTP) regulate the arterial calcification process by interacting with (1) purinergic receptors and (2) breakdown via ecto-nucleotidases, such as ectonucleotide pyrophosphatase/phosphodiesterase NPP1 or NPP3, affecting the local levels of calcification inhibitor, pyrophosphate, and stimulator inorganic phosphate (PPi/Pi ratio). Also, it has been shown that ATP analogs (ie, ß,γ-methylene-ATP [ß,γ-meATP]) inhibit vascular smooth muscle cell calcification in vitro. In the first experiment, daily dosing of ß,γ-meATP (2 mg/kg) was investigated in rats fed a warfarin diet to trigger the development of non-CKD-related arterial medial calcifications. This study showed that ß,γ-meATP significantly lowered the calcium scores in the aorta and peripheral vessels in warfarin-exposed rats. In a second experiment, daily dosing of 4 mg/kg ß,γ-meATP and its metabolite medronic acid (MDP) was analyzed in rats fed an adenine diet to promote the development of CKD-related arterial medial calcification. Administration of ß,γ-meATP and MDP did not significantly decrease aortic calcification scores in this model. Moreover, both compounds induced deleterious effects on physiological bone mineralization, causing an imminent risk for worsening the already compromised bone status in CKD. Due to this, it was not possible to raise the dosage of both compounds to tackle CKD-related arterial calcification. Again, this points out the difficult task of targeting solely ectopic calcifications without negatively affecting physiological bone mineralization. On the other hand, aortic mRNA expression of Enpp1 and Enpp3 was significantly and positively associated with aortic calcification scores, suggesting that normalizing the aortic NPP1/3 activity to control values might be a possible target to treat (CKD-induced) arterial media calcifications.

2.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240387

ABSTRACT

Diabetic Kidney Disease (DKD) is a major microvascular complication for diabetic patients and is the most common cause of chronic kidney disease (CKD) and end-stage renal disease. Antidiabetic drugs, such as metformin and canagliflozin, have been shown to exert renoprotective effects. Additionally, quercetin recently showed promising results for the treatment of DKD. However, the molecular pathways through which these drugs exert their renoprotective effects remain partly unknown. The current study compares the renoprotective potential of metformin, canagliflozin, metformin + canagliflozin, and quercetin in a preclinical rat model of DKD. By combining streptozotocin (STZ) and nicotinamide (NAD) with daily oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration, DKD was induced in male Wistar Rats. After two weeks, rats were assigned to five treatment groups, receiving vehicle, metformin, canagliflozin, metformin + canagliflozin, or quercetin for a period of 12 weeks by daily oral gavage. Non-diabetic vehicle-treated control rats were also included in this study. All rats in which diabetes was induced developed hyperglycemia, hyperfiltration, proteinuria, hypertension, renal tubular injury and interstitial fibrosis, confirming DKD. Metformin and canagliflozin, alone or together, exerted similar renoprotective actions and similar reductions in tubular injury and collagen accumulation. Renoprotective actions of canagliflozin correlated with reduced hyperglycemia, while metformin was able to exert these effects even in the absence of proper glycemic control. Gene expression revealed that the renoprotective pathways may be traced back to the NF-κB pathway. No protective effect was seen with quercetin. In this experimental model of DKD, metformin and canagliflozin were able to protect the kidney against DKD progression, albeit in a non-synergistic way. These renoprotective effects may be attributable to the inhibition of the NF-κB pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hyperglycemia , Metformin , Male , Rats , Animals , Diabetic Nephropathies/metabolism , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Metformin/pharmacology , Metformin/therapeutic use , Metformin/metabolism , NF-kappa B/metabolism , Quercetin/pharmacology , Rats, Wistar , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Hyperglycemia/metabolism
3.
Nutrients ; 15(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36771305

ABSTRACT

Renal osteodystrophy (ROD) is a complex and serious complication of chronic kidney disease (CKD), a major global health problem caused by loss of renal function. Currently, the gold standard to accurately diagnose ROD is based on quantitative histomorphometric analysis of trabecular bone. Although this analysis encompasses the evaluation of osteoblast and osteoclast number/activity, tfigurehe interest in osteocytes remains almost nihil. Nevertheless, this cell type is evidenced to perform a key role in bone turnover, particularly through its production of various bone proteins, such as sclerostin. In this study, we aim to investigate, in the context of ROD, to which extent an association exists between bone turnover and the abundance of osteocytes and osteocytic sclerostin expression in both the trabecular and cortical bone compartments. Additionally, the effect of parathyroid hormone (PTH) on bone sclerostin expression was examined in parathyroidectomized rats. Our results indicate that PTH exerts a direct inhibitory function on sclerostin, which in turn negatively affects bone turnover and mineralization. Moreover, this study emphasizes the functional differences between cortical and trabecular bone, as the number of (sclerostin-positive) osteocytes is dependent on the respective bone compartment. Finally, we evaluated the potential of sclerostin as a marker for CKD and found that the diagnostic performance of circulating sclerostin is limited and that changes in skeletal sclerostin expression occur more rapidly and more pronounced. The inclusion of osteocytic sclerostin expression and cortical bone analysis could be relevant when performing bone histomorphometric analysis for diagnostic purposes and to unravel pathological mechanisms of bone disease.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Renal Insufficiency, Chronic , Rats , Animals , Osteocytes/metabolism , Bone and Bones/metabolism , Bone Remodeling , Parathyroid Hormone/metabolism , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Renal Insufficiency, Chronic/complications
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835062

ABSTRACT

Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model. Employing a high-dimensionality unbiased proteomic approach, we also investigated the molecular signaling events associated with blocking arterial calcification through SBI-425 dosing. The remedial actions of SBI-425 were strongly associated with (i) a significant downregulation of inflammatory (acute phase response signaling) and steroid/glucose nuclear receptor signaling (LXR/RXR signaling) pathways and (ii) an upregulation of mitochondrial metabolic pathways (TCA cycle II and Fatty Acid ß-oxidation I). Interestingly, we previously demonstrated that uremic toxin-induced arterial calcification contributes to the activation of the acute phase response signaling pathway. Therefore, both studies suggest a strong link between acute phase response signaling and arterial calcification across different conditions. The identification of therapeutic targets in these molecular signaling pathways may pave the way to novel therapies against the development of arterial media calcification.


Subject(s)
Calcinosis , Vascular Calcification , Rats , Animals , Warfarin , Acute-Phase Reaction , Proteomics , Alkaline Phosphatase/metabolism , Calcinosis/metabolism , Vascular Calcification/pathology
5.
FASEB J ; 37(1): e22701, 2023 01.
Article in English | MEDLINE | ID: mdl-36520031

ABSTRACT

Calcification of the medial layer, inducing arterial stiffness, contributes significantly to cardiovascular mortality in patients with chronic kidney disease (CKD). Extracellular nucleotides block the mineralization of arteries by binding to purinergic receptors including the P2Y2 receptor. This study investigates whether deletion of the P2Y2 receptor influences the development of arterial media calcification in CKD mice. Animals were divided into: (i) wild type mice with normal renal function (control diet) (n = 8), (ii) P2Y2 R-/- mice with normal renal function (n = 8), (iii) wild type mice with CKD (n = 27), and (iv) P2Y2 R-/- mice with CKD (n = 22). To induce CKD, animals received an alternating (0.2-0.3%) adenine diet for 7 weeks. All CKD groups developed a similar degree of chronic renal failure as reflected by high serum creatinine and phosphorus levels. Also, the presence of CKD induced calcification in the heart and medial layer of the aortic wall. However, deletion of the P2Y2 receptor makes CKD mice more susceptible to the development of calcification in the heart and aorta (aortic calcium scores (median ± IQR), CKD-wild type: 0.34 ± 4.3 mg calcium/g wet tissue and CKD-P2Y2 R-/- : 4.0 ± 13.2 mg calcium/g wet tissue). As indicated by serum and aortic mRNA markers, this P2Y2 R-/- mediated increase in CKD-related arterial media calcification was associated with an elevation of calcification stimulators, including alkaline phosphatase and inflammatory molecules interleukin-6 and lipocalin 2. The P2Y2 receptor should be considered as an interesting therapeutic target for tackling CKD-related arterial media calcification.


Subject(s)
Alkaline Phosphatase , Lipocalin-2 , Renal Insufficiency, Chronic , Tunica Intima , Vascular Calcification , Animals , Mice , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Calcium/metabolism , Lipocalin-2/genetics , Lipocalin-2/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Tunica Intima/metabolism , Tunica Intima/pathology , Up-Regulation , Vascular Calcification/etiology , Vascular Calcification/genetics , Vascular Calcification/metabolism
6.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887143

ABSTRACT

Serum calcium isotopes (δ44/42Ca) have been suggested as a non-invasive and sensitive Ca balance marker. Quantitative δ44/42Ca changes associated with Ca flux across body compartment barriers relative to the dietary Ca and the correlation of δ44/42CaSerum with bone histology are unknown. We analyzed Ca and δ44/42Ca by mass-spectrometry in rats after two weeks of standard-Ca-diet (0.5%) and after four subsequent weeks of standard- and of low-Ca-diet (0.25%). In animals on a low-Ca-diet net Ca gain was 61 ± 3% and femur Ca content 68 ± 41% of standard-Ca-diet, bone mineralized area per section area was 68 ± 15% compared to standard-Ca-diet. δ44/42Ca was similar in the diets, and decreased in feces and urine and increased in serum in animals on low-Ca-diet. δ44/42CaBone was higher in animals on low-Ca-diet, lower in the diaphysis than the metaphysis and epiphysis, and unaffected by gender. Independent of diet, δ44/42CaBone was similar in the femora and ribs. At the time of sacrifice, δ44/42CaSerum inversely correlated with intestinal Ca uptake and histological bone mineralization markers, but not with Ca content and bone mineral density by µCT. In conclusion, δ44/42CaBone was bone site specific, but mechanical stress and gender independent. Low-Ca-diet induced marked changes in feces, serum and urine δ44/42Ca in growing rats. δ44/42CaSerum inversely correlated with markers of bone mineralization.


Subject(s)
Calcification, Physiologic , Calcium , Animals , Bone Density , Calcium/analysis , Calcium Isotopes , Calcium, Dietary , Diet , Rats
7.
Metabolites ; 12(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35448514

ABSTRACT

The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.

8.
FASEB J ; 36(5): e22315, 2022 05.
Article in English | MEDLINE | ID: mdl-35429059

ABSTRACT

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg-1 · d-1 ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.


Subject(s)
Calcinosis , Vascular Calcification , Vascular Diseases , Animals , Calcium , Disease Progression , Endothelial Cells , Male , NG-Nitroarginine Methyl Ester , Rats , Tunica Media , Vascular Calcification/chemically induced , Warfarin/toxicity
9.
Kidney Int ; 101(5): 929-944, 2022 05.
Article in English | MEDLINE | ID: mdl-35271933

ABSTRACT

Current treatment strategies for chronic kidney disease (CKD) mainly focus on controlling risk factors. Metformin, a first-line drug for type 2 diabetes, exerts beneficial pleiotropic actions beyond its prescribed use and incipient data have revealed protective effects against the development of kidney impairment. This study evaluated the therapeutic efficacy of metformin and canagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor recently approved by the United States Food and Drug Administration to treat diabetic nephropathy, in slowing the progression of established non-diabetic CKD. Rats with adenine-induced CKD were assigned to different treatment groups to receive either 200 mg/kg metformin, four or five weeks after the start of the adenine diet (established mild-moderate CKD), or 25 mg/kg canagliflozin four weeks after the start of the diet, by daily oral gavage administered during four weeks. Each treatment group was compared to a vehicle group. Chronic adenine dosing resulted in severe CKD in vehicle-treated rats as indicated by a marked rise in serum creatinine levels, a marked decrease in creatinine clearance, and a disturbed mineral metabolism. Metformin, but not canagliflozin, halted functional kidney decline. Additionally, kidneys of metformin-treated animals showed less interstitial area and inflammation as compared to the vehicle group. Proteomic analyses revealed that metformin's kidney-protective effect was associated with the activation of the Hippo signaling pathway, a highly conserved multiprotein kinase cascade that controls tissue development, organ size, cell proliferation, and apoptosis. Thus, metformin demonstrated therapeutic efficacy by halting the progression of established CKD in a rat model.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Metformin , Renal Insufficiency, Chronic , Adenine/adverse effects , Animals , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Female , Humans , Male , Metformin/pharmacology , Metformin/therapeutic use , Proteomics , Rats , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy
10.
Bone Rep ; 16: 101172, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35198658

ABSTRACT

Bone microarchitecture is an important component of bone quality and disturbances may reduce bone strength and resistance to trauma. Kidney transplant recipients have an excess risk of fractures, and bone loss affecting both trabecular and cortical bone compartments have been demonstrated after kidney transplantation. The primary aim of this study was to investigate the impact of kidney transplantation on trabecular and cortical bone microarchitecture, assessed by histomorphometry and micro computed tomography (µCT). Iliac crest bone biopsies, analyzed by bone histomorphometry and µCT, were performed at time of kidney transplantation and 12 months post-transplantation in an unselected cohort of 30 patients. Biochemical markers of mineral metabolism and bone turnover were measured at both time-points. At 12 months post-transplantation, bone turnover was low in 5 (17%) and normal in 25 (83%) patients. By histomorphometry, bone remodeling normalized, with decreases in eroded perimeters (4.0 to 2.1%, p = 0.02) and number of patients with marrow fibrosis (41 to 0%, p < 0.001). By µCT, trabecular thickness (134 to 125 µM, p = 0.003) decreased slightly. Other parameters of bone volume and microarchitecture, including cortical thickness (729 to 713 µm, p = 0.73) and porosity (10.2 to 9.5%, p = 0.15), remained stable. We conclude that kidney transplantation with current immunosuppressive protocols has a limited impact on bone microarchitecture.

11.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Article in English | MEDLINE | ID: mdl-35038187

ABSTRACT

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Renal Insufficiency, Chronic , Vascular Calcification , Adaptor Proteins, Signal Transducing/metabolism , Adenine/adverse effects , Aged , Animals , Calcium , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Warfarin/adverse effects , beta Catenin
12.
J Cell Physiol ; 237(1): 1070-1086, 2022 01.
Article in English | MEDLINE | ID: mdl-34658034

ABSTRACT

Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.


Subject(s)
Acetylcysteine , Hydrogen Sulfide , Acetylcysteine/pharmacology , Arteries/metabolism , Glutathione/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Osteoblasts/metabolism , Osteogenesis
13.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884571

ABSTRACT

One of the most important risk factors for developing chronic kidney disease (CKD) is diabetes. To assess the safety and efficacy of potential drug candidates, reliable animal models that mimic human diseases are crucial. However, a suitable model of diabetic kidney disease (DKD) is currently not available. The aim of this study is to develop a rat model of DKD by combining streptozotocin and nicotinamide (STZ/NAD) with oral N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) administration. Diabetes was induced in male Wistar rats by intravenous injection of 65 mg/kg STZ, 15 min after intraperitoneal injection of 230 mg/kg NAD. Rats were assigned to different groups receiving L-NAME (100 mg/kg/day) (STZ/NAD/L-NAME) or vehicle (STZ/NAD) for a period of 9 or 12 weeks by daily oral gavage. All rats developed hyperglycemia. Hyperfiltration was observed at the start of the study, whereas increased serum creatinine, albumin-to-creatinine ratio, and evolving hypofiltration were detected at the end of the study. Daily L-NAME administration caused a rapid rise in blood pressure. Histopathological evaluation revealed heterogeneous renal injury patterns, which were most severe in the STZ/NAD/L-NAME rats. L-NAME-induced NO-deficiency in STZ/NAD-induced diabetic rats leads to multiple characteristic features of human DKD and may represent a novel rat model of DKD.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/pathology , NAD/toxicity , NG-Nitroarginine Methyl Ester/toxicity , Animals , Blood Glucose/analysis , Blood Pressure , Diabetic Nephropathies/etiology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/toxicity , Male , NG-Nitroarginine Methyl Ester/administration & dosage , Nitric Oxide/metabolism , Rats , Rats, Wistar
14.
Pharmaceutics ; 13(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34452102

ABSTRACT

Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.75% adenine rat model of CKD. Treatments started with the induction of CKD, including (i) rats with normal renal function (control diet) treated with vehicle and CKD rats treated with either (ii) vehicle, (iii) 10 mg/kg/day SBI-425, (iv) 120 µmol/kg/day PPi and (v) 120 µmol/kg/day PPi and 10 mg/kg/day SBI-425. All CKD groups developed a stable chronic renal failure reflected by hyperphosphatemia, hypocalcemia and high serum creatinine levels. CKD induced arterial media calcification and bone metabolic defects. All treatments, except for SBI-425 alone, blocked CKD-related arterial media calcification. More important, SBI-425 alone and in combination with PPi increased osteoid area pointing to a less efficient bone mineralization. Clearly, potential side effects on bone mineralization will need to be assessed in any clinical trial aimed at modifying the Pi/PPi ratio in CKD patients who already suffer from a compromised bone status.

15.
Bone ; 152: 116066, 2021 11.
Article in English | MEDLINE | ID: mdl-34147707

ABSTRACT

A bone biopsy with prior tetracycline labeling is the gold standard to diagnose renal osteodystrophy. In cases of missing tetracycline labels, it is still paramount to gain clinically relevant information from the extracted bone sample, by evaluating the static histomorphometry. This study investigates the diagnostic performance of static histomorphometry for the evaluation of high and low bone turnover. Transiliac bone biopsies taken pre- or post- kidney transplantation, of sufficient quality for a full histomorphometric analysis were included (n = 205). The cohort was randomly split to provide separate exploration and validation subsets. Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC). All histomorphometric parameters were significantly different across categories of low (24%), normal (60%), and high (16%) bone turnover, and all were significant predictors of both high and low bone turnover (AUC 0.71-0.84). Diagnostic performance was very good for high turnover, as a combination of static parameters resulted in negative and positive predictive values (NPV and PPV) of 80% and 96%, respectively. For low turnover, the combined model resulted in PPV of 71% and NPV of 82%. We conclude that in the absence of tetracycline labels, static histomorphometry provide an acceptable alternative for a diagnosis of bone turnover in renal osteodystrophy.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Kidney Transplantation , Biopsy , Bone Remodeling , Bone and Bones , Chronic Kidney Disease-Mineral and Bone Disorder/diagnosis , Humans , Tetracyclines
17.
Calcif Tissue Int ; 108(4): 528-538, 2021 04.
Article in English | MEDLINE | ID: mdl-33772341

ABSTRACT

A bone biopsy is still considered the gold standard for diagnosis of renal osteodystrophy. It allows to measure both static and dynamic parameters of bone remodeling and is the only method able to evaluate mineralization and allows analysis of both cortical and trabecular bone. Although bone volume can be measured indirectly by dual-energy X-ray absorptiometry, mineralization defects, bone metal deposits, cellular number/activity, and even turnover abnormalities are difficult to determine by techniques other than qualitative bone histomorphometry. In this review, we evaluate the role of bone biopsy in the clinical practice.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Absorptiometry, Photon , Biopsy , Bone and Bones , Cancellous Bone , Humans
18.
Kidney Int ; 99(5): 1173-1178, 2021 05.
Article in English | MEDLINE | ID: mdl-33422551

ABSTRACT

Parathyroid hormone (PTH) is a key regulator of bone turnover but can be oxidized in vivo, which impairs biological activity. Variable PTH oxidation may account for the rather poor correlation of PTH with indices of bone turnover in chronic kidney disease. Here, we tested whether non-oxidized PTH is superior to total PTH as a marker of bone turnover in 31 patients with kidney failure included from an ongoing prospective observational bone biopsy study and selected to cover the whole spectrum of bone turnover. Receiver Operating Characteristic (ROC) curves, Spearman correlation and regression analysis of non-oxidized PTH, total PTH and bone turnover markers (bone-specific alkaline phosphatase, procollagen N-terminal pro-peptide and tartrate-resistant acid phosphatase 5b) were used to assess the capability of non-oxidized PTH vs. total PTH to discriminate low from non-low and high from non-high bone turnover, as assessed quantitatively by bone histomorphometry. Serum levels of non-oxidized PTH and total PTH were strongly and significantly correlated. Histomorphometric parameters of bone turnover and the circulating bone turnover markers showed similar correlation coefficients with non-oxidized PTH and total PTH. The area under the ROC (AUROC) values for discriminating between low/non-low turnover for non-oxidized PTH and total PTH were significant and comparable (0.82 and 0.79, respectively). For high/non-high turnover the AUROCs were also significant and of the same magnitude (0.76 and 0.80, respectively). Thus, measuring non-oxidized PTH using the currently available method provides no added value compared to total PTH as an indicator of bone turnover in patients with kidney failure.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Alkaline Phosphatase , Biomarkers , Bone Remodeling , Bone and Bones , Chronic Kidney Disease-Mineral and Bone Disorder/diagnosis , Humans , Kidney Failure, Chronic/diagnosis , Parathyroid Hormone , Renal Dialysis , Renal Insufficiency, Chronic/diagnosis
20.
Nephrol Dial Transplant ; 35(10): 1689-1699, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33022710

ABSTRACT

INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.


Subject(s)
Disease Models, Animal , Ferric Compounds/therapeutic use , Kidney Failure, Chronic/drug therapy , Sucrose/therapeutic use , Vascular Calcification/prevention & control , Animals , Drug Combinations , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Kidney Failure, Chronic/complications , Male , Phosphorus/blood , Rats , Rats, Wistar , Vascular Calcification/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...