Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Alzheimers Dis Rep ; 8(1): 57-73, 2024.
Article in English | MEDLINE | ID: mdl-38312533

ABSTRACT

Background: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are typically associated with very different clinical and neuroanatomical presentations; however, there is increasing recognition of similarities. Objective: To examine memory and executive functions, as well as cortical thickness, and glucose metabolism in AD and bvFTD signature brain regions. Methods: We compared differences in a group of biomarker-defined participants with Alzheimer's disease and a group of clinically diagnosed participants with bvFTD. These groups were also contrasted with healthy controls (HC). Results: As expected, memory functions were generally more impaired in AD, followed by bvFTD, and both clinical groups performed more poorly than the HC group. Executive function measures were similar in AD compared to bvFTD for motor sequencing and go/no-go, but bvFTD had more difficulty with a set shifting task. Participants with AD showed thinner cortex and lower glucose metabolism in the angular gyrus compared to bvFTD. Participants with bvFTD had thinner cortex in the insula and temporal pole relative to AD and healthy controls, but otherwise the two clinical groups were similar for other frontal and temporal signature regions. Conclusions: Overall, the results of this study highlight more similarities than differences between AD and bvFTD in terms of cognitive functions, cortical thickness, and glucose metabolism. Further research is needed to better understand the mechanisms mediating this overlap and how these relationships evolve longitudinally.

2.
N Engl J Med ; 390(1): 55-62, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169490

ABSTRACT

Antiamyloid antibodies have been used to reduce cerebral amyloid-beta (Aß) load in patients with Alzheimer's disease. We applied focused ultrasound with each of six monthly aducanumab infusions to temporarily open the blood-brain barrier with the goal of enhancing amyloid removal in selected brain regions in three participants over a period of 6 months. The reduction in the level of Aß was numerically greater in regions treated with focused ultrasound than in the homologous regions in the contralateral hemisphere that were not treated with focused ultrasound, as measured by fluorine-18 florbetaben positron-emission tomography. Cognitive tests and safety evaluations were conducted over a period of 30 to 180 days after treatment. (Funded by the Harry T. Mangurian, Jr. Foundation and the West Virginia University Rockefeller Neuroscience Institute.).


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Ultrasonic Therapy , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/analysis , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/diagnostic imaging , Positron-Emission Tomography/methods , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use
3.
J Neurosurg ; 140(1): 231-239, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37329519

ABSTRACT

OBJECTIVE: There were more than 107,000 drug overdose deaths in the US in 2021, the most ever recorded. Despite advances in behavioral and pharmacological treatments, over 50% of those receiving treatment for opioid use disorder (OUD) experience drug use recurrence (relapse). Given the prevalence of OUD and other substance use disorders (SUDs), the high rate of drug use recurrence, and the number of drug overdose deaths, novel treatment strategies are desperately needed. The objective of this study was to evaluate the safety and feasibility of deep brain stimulation (DBS) targeting the nucleus accumbens (NAc)/ventral capsule (VC) and potential impact on outcomes in individuals with treatment-refractory OUD. METHODS: A prospective, open-label, single-arm study was conducted among participants with longstanding treatment-refractory OUD (along with other co-occurring SUDs) who underwent DBS in the NAc/VC. The primary study endpoint was safety; secondary/exploratory outcomes included opioid and other substance use, substance craving, and emotional symptoms throughout follow-up and 18FDG-PET neuroimaging. RESULTS: Four male participants were enrolled and all tolerated DBS surgery well with no serious adverse events (AEs) and no device- or stimulation-related AEs. Two participants sustained complete substance abstinence for > 1150 and > 520 days, respectively, with significant post-DBS reductions in substance craving, anxiety, and depression. One participant experienced post-DBS drug use recurrences with reduced frequency and severity. The DBS system was explanted in one participant due to noncompliance with treatment requirements and the study protocol. 18FDG-PET neuroimaging revealed increased glucose metabolism in the frontal regions for the participants with sustained abstinence only. CONCLUSIONS: DBS of the NAc/VC was safe, feasible, and can potentially reduce substance use, craving, and emotional symptoms in those with treatment-refractory OUD. A randomized, sham-controlled trial in a larger cohort of patients is being initiated.


Subject(s)
Deep Brain Stimulation , Drug Overdose , Opioid-Related Disorders , Humans , Male , Nucleus Accumbens/diagnostic imaging , Deep Brain Stimulation/methods , Fluorodeoxyglucose F18 , Prospective Studies , Feasibility Studies , Neoplasm Recurrence, Local , Opioid-Related Disorders/therapy
4.
medRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045245

ABSTRACT

Background: Lung nodule incidence is increasing. Many nodules require biopsy to discriminate between benign and malignant etiologies. The gold-standard for minimally invasive biopsy, computed tomography-guided transthoracic needle biopsy (CT-TTNB), has never been directly compared to navigational bronchoscopy, a modality which has recently seen rapid technological innovation and is associated with improving diagnostic yield and lower complication rate. Current estimates of the diagnostic utility of both modalities are based largely on non-comparative data with significant risk for selection, referral, and publication biases. Methods: The VERITAS trial (na V igation E ndoscopy to R each Indeterminate lung nodules versus T ransthoracic needle A spiration, a randomized controlled S tudy) is a multicenter, 1:1 randomized, parallel-group trial designed to ascertain whether electromagnetic navigational bronchoscopy with integrated digital tomosynthesis is noninferior to CT-TTNB for the diagnosis of peripheral lung nodules 10-30 mm in diameter with pre-test probability of malignancy of at least 10%. The primary endpoint is diagnostic accuracy through 12 months follow-up. Secondary endpoints include diagnostic yield, complication rate, procedure duration, need for additional invasive diagnostic procedures, and radiation exposure. Discussion: The results of this rigorously designed trial will provide high-quality data regarding the management of lung nodules, a common clinical entity which often represents the earliest and most treatable stage of lung cancer. Several design challenges are described. Notably, all nodules are centrally reviewed by an independent interventional pulmonology and radiology adjudication panel relying on pre-specified exclusions to ensure enrolled nodules are amenable to sampling by both modalities while simultaneously protecting against selection bias favoring either modality. Conservative diagnostic yield and accuracy definitions with pre-specified criteria for what non-malignant findings may be considered diagnostic were chosen to avoid inflation of estimates of diagnostic utility. Trial registration: ClinicalTrials.gov NCT04250194.

5.
Front Neurol ; 14: 1214083, 2023.
Article in English | MEDLINE | ID: mdl-37731852

ABSTRACT

Composite cognitive measures in large-scale studies with biomarker data for amyloid and tau have been widely used to characterize Alzheimer's disease (AD). However, little is known about how the findings from these studies translate to memory clinic populations without biomarker data, using single measures of cognition. Additionally, most studies have utilized voxel-based morphometry or limited surface-based morphometry such as cortical thickness, to measure the neurodegeneration associated with cognitive deficits. In this study, we aimed to replicate and extend the biomarker, composite study relationships using expanded surface-based morphometry and single measures of cognition in a memory clinic population. We examined 271 clinically diagnosed symptomatic individuals with mild cognitive impairment (N = 93) and Alzheimer's disease dementia (N = 178), as well as healthy controls (N = 29). Surface-based morphometry measures included cortical thickness, sulcal depth, and gyrification index within the "signature areas" of Alzheimer's disease. The cognitive variables pertained to hallmark features of Alzheimer's disease including verbal learning, verbal memory retention, and language, as well as executive function. The results demonstrated that verbal learning, language, and executive function correlated with the cortical thickness of the temporal, frontal, and parietal areas. Verbal memory retention was correlated to the thickness of temporal regions and gyrification of the inferior temporal gyrus. Language was related to the temporal regions and the supramarginal gyrus' sulcal depth and gyrification index. Executive function was correlated with the medial temporal gyrus and supramarginal gyrus sulcal depth, and the gyrification index of temporal regions and supramarginal gyrus, but not with the frontal areas. Predictions of each of these cognitive measures were dependent on a combination of structures and each of the morphometry measurements, and often included medial temporal gyrus thickness and sulcal depth. Overall, the results demonstrated that the relationships between cortical thinning and cognition are widespread and can be observed using single measures of cognition in a clinically diagnosed AD population. The utility of sulcal depth and gyrification index measures may be more focal to certain brain areas and cognitive measures. The relative importance of temporal, frontal, and parietal regions in verbal learning, language, and executive function, but not verbal memory retention, was replicated in this clinic cohort.

6.
J Neurol Neurosurg Psychiatry ; 95(1): 86-96, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37679029

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is commonly performed with patients awake to perform intraoperative microelectrode recordings and/or macrostimulation testing to guide final electrode placement. Supplemental information from atlas-based databases derived from prior patient data and visualised as efficacy heat maps transformed and overlaid onto preoperative MRIs can be used to guide preoperative target planning and intraoperative final positioning. Our quantitative analysis of intraoperative testing and corresponding changes made to final electrode positioning aims to highlight the value of intraoperative neurophysiological testing paired with image-based data to optimise final electrode positioning in a large patient cohort. METHODS: Data from 451 patients with movement disorders treated with 822 individual DBS leads at a single institution from 2011 to 2021 were included. Atlas-based data was used to guide surgical targeting. Intraoperative testing data and coordinate data were retrospectively obtained from a large patient database. Medical records were reviewed to obtain active contact usage and neurologist-defined outcomes at 1 year. RESULTS: Microelectrode recording firing profiles differ per track, per target and inform the locations where macrostimulation testing is performed. Macrostimulation performance correlates with the final electrode track chosen. Centroids of atlas-based efficacy heat maps per target were close in proximity to and may predict active contact usage at 1 year. Overall, patient outcomes at 1 year were improved for patients with better macrostimulation response. CONCLUSIONS: Atlas-based imaging data is beneficial for target planning and intraoperative guidance, and in conjunction with intraoperative neurophysiological testing during awake DBS can be used to individualize and optimise final electrode positioning, resulting in favourable outcomes.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Retrospective Studies , Wakefulness , Parkinson Disease/surgery , Magnetic Resonance Imaging , Microelectrodes , Electrodes, Implanted
7.
J Neurol Neurosurg Psychiatry ; 94(11): 879-886, 2023 11.
Article in English | MEDLINE | ID: mdl-37336643

ABSTRACT

BACKGROUND: Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive alternative to surgical resection for drug-resistant mesial temporal lobe epilepsy (mTLE). Reported rates of seizure freedom are variable and long-term durability is largely unproven. Anterior temporal lobectomy (ATL) remains an option for patients with MRgLITT treatment failure. However, the safety and efficacy of this staged strategy is unknown. METHODS: This multicentre, retrospective cohort study included 268 patients consecutively treated with mesial temporal MRgLITT at 11 centres between 2012 and 2018. Seizure outcomes and complications of MRgLITT and any subsequent surgery are reported. Predictive value of preoperative variables for seizure outcome was assessed. RESULTS: Engel I seizure freedom was achieved in 55.8% (149/267) at 1 year, 52.5% (126/240) at 2 years and 49.3% (132/268) at the last follow-up ≥1 year (median 47 months). Engel I or II outcomes were achieved in 74.2% (198/267) at 1 year, 75.0% (180/240) at 2 years and 66.0% (177/268) at the last follow-up. Preoperative focal to bilateral tonic-clonic seizures were independently associated with seizure recurrence. Among patients with seizure recurrence, 14/21 (66.7%) became seizure-free after subsequent ATL and 5/10 (50%) after repeat MRgLITT at last follow-up≥1 year. CONCLUSIONS: MRgLITT is a viable treatment with durable outcomes for patients with drug-resistant mTLE evaluated at a comprehensive epilepsy centre. Although seizure freedom rates were lower than reported with ATL, this series represents the early experience of each centre and a heterogeneous cohort. ATL remains a safe and effective treatment for well-selected patients who fail MRgLITT.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Laser Therapy , Humans , Epilepsy, Temporal Lobe/surgery , Retrospective Studies , Seizures/surgery , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Treatment Outcome , Magnetic Resonance Imaging , Lasers
8.
Fluids Barriers CNS ; 20(1): 46, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328855

ABSTRACT

BACKGROUND: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is under investigation as a therapeutic modality for neurodegeneration, yet its effects in humans are incompletely understood. Here, we assessed physiologic responses to FUS administered in multifocal brain sites of persons with Alzheimer's disease (AD). METHODS: At a tertiary neuroscience institute, eight participants with AD (mean age 65, 38% F) enrolled in a phase 2 clinical trial underwent three successive targeted BBB opening procedures at 2 week intervals using a 220 kHz FUS transducer in combination with systemically administered microbubbles. In all, 77 treatment sites were evaluated and encompassed hippocampal, frontal, and parietal brain regions. Post-FUS imaging changes, including susceptibility effects and spatiotemporal gadolinium-based contrast agent enhancement patterns, were analyzed using serial 3.0-Tesla MRI. RESULTS: Post-FUS MRI revealed expected intraparenchymal contrast extravasation due to BBB opening at all targeted brain sites. Immediately upon BBB opening, hyperconcentration of intravenously-administered contrast tracer was consistently observed around intracerebral veins. Following BBB closure, within 24-48 h of FUS intervention, permeabilization of intraparenchymal veins was observed and persisted for up to one week. Notably, extraparenchymal meningeal venous permeabilization and associated CSF effusions were also elicited and persisted up to 11 days post FUS treatment, prior to complete spontaneous resolution in all participants. Mild susceptibility effects were detected, however no overt intracranial hemorrhage or other serious adverse effects occurred in any participant. CONCLUSIONS: FUS-mediated BBB opening is safely and reproducibly achieved in multifocal brain regions of persons with AD. Post-FUS tracer enhancement phenomena suggest the existence of a brain-wide perivenous fluid efflux pathway in humans and demonstrate reactive physiological changes involving these conduit spaces in the delayed, subacute phase following BBB disruption. The delayed reactive venous and perivenous changes are consistent with a dynamic, zonal exudative response to upstream capillary manipulation. Further preclinical and clinical investigations of these FUS-related imaging phenomena and of intracerebral perivenous compartment changes are needed to elucidate physiology of this pathway as well as biological effects of FUS administered with and without adjuvant neurotherapeutics. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03671889, registered 9/14/2018.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Aged , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Ultrasonography , Male , Female
9.
Article in English | MEDLINE | ID: mdl-36367308

ABSTRACT

Alzheimer's disease is primarily known for deficits in learning and retaining new information. This has long been associated with pathological changes in the mesial temporal lobes. The role of the frontal lobes in memory in Alzheimer's disease is less well understood. In this study, we examined the role of the frontal lobes in learning, recognition, and retention of new verbal information, as well as the presence of specific errors (i.e., intrusions and false-positive errors). Participants included one hundred sixty-seven patients clinically diagnosed with amnestic mild cognitive impairment or suspected Alzheimer's disease dementia who were administered the California Verbal Learning Test and completed high-resolution MRI. We confirmed the role of the mesial temporal lobes in learning and retention, including the volumes of the hippocampus, entorhinal cortex, and parahippocampal gyrus. In addition, false-positive errors were associated with all volumes of the mesial temporal lobes and widespread areas within the frontal lobes. Errors of intrusion were related to the supplementary motor cortex and hippocampus. Most importantly, the mesial temporal lobes interacted with the frontal lobes for learning, recognition, and memory errors. Lower volumes in both regions explained more performance variance than any single structure. This study supports the interaction of the frontal lobes with the temporal lobes in many aspects of memory in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Recognition, Psychology , Hippocampus , Magnetic Resonance Imaging , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Verbal Learning , Neuropsychological Tests
10.
J Neurosurg ; 139(1): 275-283, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36334289

ABSTRACT

OBJECTIVE: MRI-guided low-intensity focused ultrasound (FUS) has been shown to reversibly open the blood-brain barrier (BBB), with the potential to deliver therapeutic agents noninvasively to target brain regions in patients with Alzheimer's disease (AD) and other neurodegenerative conditions. Previously, the authors reported the short-term safety and feasibility of FUS BBB opening of the hippocampus and entorhinal cortex (EC) in patients with AD. Given the need to treat larger brain regions beyond the hippocampus and EC, brain volumes and locations treated with FUS have now expanded. To evaluate any potential adverse consequences of BBB opening on disease progression, the authors report safety, imaging, and clinical outcomes among participants with mild AD at 6-12 months after FUS treatment targeted to the hippocampus, frontal lobe, and parietal lobe. METHODS: In this open-label trial, participants with mild AD underwent MRI-guided FUS sonication to open the BBB in ß-amyloid positive regions of the hippocampus, EC, frontal lobe, and parietal lobe. Participants underwent 3 separate FUS treatment sessions performed 2 weeks apart. Outcome assessments included safety, imaging, neurological, cognitive, and florbetaben ß-amyloid PET. RESULTS: Ten participants (range 55-76 years old) completed 30 separate FUS treatments at 2 participating institutions, with 6-12 months of follow-up. All participants had immediate BBB opening after FUS and BBB closure within 24-48 hours. All FUS treatments were well tolerated, with no serious adverse events related to the procedure. All 10 participants had a minimum of 6 months of follow-up, and 7 participants had a follow-up out to 1 year. Changes in the Alzheimer's Disease Assessment Scale-cognitive and Mini-Mental State Examination scores were comparable to those in controls from the Alzheimer's Disease Neuroimaging Initiative. PET scans demonstrated an average ß-amyloid plaque of 14% in the Centiloid scale in the FUS-treated regions. CONCLUSIONS: This study is the largest cohort of participants with mild AD who received FUS treatment, and has the longest follow-up to date. Safety was demonstrated in conjunction with reversible and repeated BBB opening in multiple cortical and deep brain locations, with a concomitant reduction of ß-amyloid. There was no apparent cognitive worsening beyond expectations up to 1 year after FUS treatment, suggesting that the BBB opening treatment in multiple brain regions did not adversely influence AD progression. Further studies are needed to determine the clinical significance of these findings. FUS offers a unique opportunity to decrease amyloid plaque burden as well as the potential to deliver targeted therapeutics to multiple brain regions in patients with neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Humans , Middle Aged , Aged , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Plaque, Amyloid , Brain/metabolism , Amyloid beta-Peptides/metabolism , Cognition
11.
Article in English | MEDLINE | ID: mdl-35603568

ABSTRACT

Amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) dementia are characterized by pathological changes to the medial temporal lobes, resulting in explicit learning and retention reductions. Studies demonstrate that implicit/procedural memory processes are relatively intact in these populations, supporting different anatomical substrates for differing memory systems. This study examined differences between explicit and procedural learning and retention in individuals with aMCI and AD dementia relative to matched healthy controls. We also examined anatomical substrates using volumetric MRI. Results revealed expected difficulties with explicit learning and retention in individuals with aMCI and AD with relatively preserved procedural memory. Explicit verbal retention was associated with medial temporal cortex volumes. However, procedural retention was not related to medial temporal or basal ganglia volumes. Overall, this study confirms the dissociation between explicit relative to procedural learning and retention in aMCI and AD dementia and supports differing anatomical substrates.

12.
PLoS One ; 16(10): e0257997, 2021.
Article in English | MEDLINE | ID: mdl-34648513

ABSTRACT

Conventional testing and diagnostic methods for infections like SARS-CoV-2 have limitations for population health management and public policy. We hypothesize that daily changes in autonomic activity, measured through off-the-shelf technologies together with app-based cognitive assessments, may be used to forecast the onset of symptoms consistent with a viral illness. We describe our strategy using an AI model that can predict, with 82% accuracy (negative predictive value 97%, specificity 83%, sensitivity 79%, precision 34%), the likelihood of developing symptoms consistent with a viral infection three days before symptom onset. The model correctly predicts, almost all of the time (97%), individuals who will not develop viral-like illness symptoms in the next three days. Conversely, the model correctly predicts as positive 34% of the time, individuals who will develop viral-like illness symptoms in the next three days. This model uses a conservative framework, warning potentially pre-symptomatic individuals to socially isolate while minimizing warnings to individuals with a low likelihood of developing viral-like symptoms in the next three days. To our knowledge, this is the first study using wearables and apps with machine learning to predict the occurrence of viral illness-like symptoms. The demonstrated approach to forecasting the onset of viral illness-like symptoms offers a novel, digital decision-making tool for public health safety by potentially limiting viral transmission.


Subject(s)
Artificial Intelligence , COVID-19/diagnosis , Health Personnel , Models, Theoretical , Wearable Electronic Devices , Humans , Machine Learning , Pilot Projects , Sensitivity and Specificity
13.
Radiology ; 298(3): 654-662, 2021 03.
Article in English | MEDLINE | ID: mdl-33399511

ABSTRACT

Background Opening of the blood-brain barrier (BBB) induced with MRI-guided focused ultrasound has been shown in experimental animal models to reduce amyloid-ß plaque burden, improve memory performance, and facilitate delivery of therapeutic agents to the brain. However, physiologic effects of this procedure in humans with Alzheimer disease (AD) require further investigation. Purpose To assess imaging effects of focused ultrasound-induced BBB opening in the hippocampus of human participants with early AD and to evaluate fluid flow patterns after BBB opening by using serial contrast-enhanced MRI. Materials and Methods Study participants with early AD recruited to a Health Insurance Portability and Accountability Act-compliant, prospective, ongoing phase II clinical trial (ClinicalTrials.gov identifier, NCT03671889) underwent three separate focused ultrasound-induced BBB opening procedures that used a 220-kHz transducer with a concomitant intravenous microbubble contrast agent administered at 2-week intervals targeting the hippocampus and entorhinal cortex between October 2018 and May 2019. Posttreatment effects and gadolinium-based contrast agent enhancement patterns were evaluated by using 3.0-T MRI. Results Three women (aged 61, 72, and 73 years) consecutively enrolled in the trial successfully completed repeated focused ultrasound-induced BBB opening of the hippocampus and entorhinal cortex. Postprocedure contrast enhancement was clearly identified within the targeted brain volumes, indicating immediate spatially precise BBB opening. Parenchymal enhancement resolved within 24 hours after all treatments, confirming BBB closure. Transient perivenous enhancement was consistently observed during the acute phase after BBB opening. Notably, contrast enhancement reappeared in the perivenular regions after BBB closure. This imaging marker is consistent with blood-meningeal barrier permeability and persisted for 24-48 hours before spontaneous resolution. No evidence of intracranial hemorrhage or other adverse effect was identified. Conclusion MRI-guided focused ultrasound-induced blood-brain barrier opening was safely performed in the hippocampi of three participants with Alzheimer disease without any adverse effects. Posttreatment MRI reveals a unique spatiotemporal contrast enhancement pattern that suggests a perivenular immunologic healing response downstream from targeted sites. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Klibanov in this issue.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Blood-Brain Barrier/diagnostic imaging , Drug Delivery Systems/methods , Magnetic Resonance Imaging, Interventional/methods , Ultrasonic Therapy/methods , Aged , Contrast Media , Entorhinal Cortex , Female , Hippocampus , Humans , Middle Aged , Prospective Studies
14.
Mol Psychiatry ; 26(1): 60-65, 2021 01.
Article in English | MEDLINE | ID: mdl-33144712

ABSTRACT

A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when "at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication." The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder/therapy , Humans , Multicenter Studies as Topic , Obsessive-Compulsive Disorder/psychology , Obsessive-Compulsive Disorder/surgery , Randomized Controlled Trials as Topic , Treatment Outcome
15.
Front Hum Neurosci ; 14: 593672, 2020.
Article in English | MEDLINE | ID: mdl-33132889

ABSTRACT

The blood-brain barrier (BBB) limits therapeutic delivery in Alzheimer's disease (AD) and other neurological disorders. Animal models have demonstrated safe BBB opening and reduction in ß-amyloid plaque with focused ultrasound (FUS). We recently demonstrated the feasibility, safety, and reversibility of FUS-induced BBB opening in the hippocampus and entorhinal cortex in six participants with early AD. We now report the effect of BBB opening with FUS treatment on ß-amyloid plaque. Six participants underwent 18F-Florbetaben PET scan at baseline and 1 week after the completion of the third FUS treatment (60 days interval). PET analysis comparing the hippocampus and entorhinal cortex in the treated and untreated hemispheres revealed a decrease in the ratio of 18F-Florbetaben ligand binding. The standard uptake value ratios (SUVr) reduction ranged from 2.7% to 10% with an average of 5.05% (±2.76) suggesting a decrease in ß-amyloid plaque.

16.
Proc Natl Acad Sci U S A ; 117(17): 9180-9182, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284421

ABSTRACT

The blood-brain barrier (BBB) presents a significant challenge for treating brain disorders. The hippocampus is a key target for novel therapeutics, playing an important role in Alzheimer's disease (AD), epilepsy, and depression. Preclinical studies have shown that magnetic resonance (MR)-guided low-intensity focused ultrasound (FUS) can reversibly open the BBB and facilitate delivery of targeted brain therapeutics. We report initial clinical trial results evaluating the safety, feasibility, and reversibility of BBB opening with FUS treatment of the hippocampus and entorhinal cortex (EC) in patients with early AD. Six subjects tolerated a total of 17 FUS treatments with no adverse events and neither cognitive nor neurological worsening. Post-FUS contrast MRI revealed immediate and sizable hippocampal parenchymal enhancement indicating BBB opening, followed by BBB closure within 24 h. The average opening was 95% of the targeted FUS volume, which corresponds to 29% of the overall hippocampus volume. We demonstrate that FUS can safely, noninvasively, transiently, reproducibly, and focally mediate BBB opening in the hippocampus/EC in humans. This provides a unique translational opportunity to investigate therapeutic delivery in AD and other conditions.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Ultrasonic Therapy/methods , Aged , Alzheimer Disease/metabolism , Biological Transport , Blood-Brain Barrier/physiology , Brain/physiology , Drug Delivery Systems/methods , Female , Hippocampus/metabolism , Humans , Male , Microbubbles , Middle Aged , Ultrasonic Waves , Ultrasonography
17.
Parkinsonism Relat Disord ; 70: 96-102, 2020 01.
Article in English | MEDLINE | ID: mdl-31866156

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) surgery is an efficacious, underutilized treatment for Parkinson's disease (PD). Studies of DBS post-operative outcomes are often restricted to data from a single center and consider DBS in isolation. National estimates of DBS readmission and post-operative outcomes are needed, as are comparisons to commonly performed surgeries. METHODS: This study used datasets from the 2013 and 2014 Nationwide Readmissions Database (NRD). Our sample was restricted to PD patients discharged alive after hospitalization for DBS surgery. Descriptive analyses examined patient, clinical, hospital and index hospitalization characteristics. The all-cause, non-elective 30-day readmission rate after DBS was calculated, and logistic regression models were built to examine factors associated with readmission. Readmission rates for the most common surgical procedures were calculated and compared to DBS. RESULTS: There were 6058 DBS surgeries for PD in our sample, most often involving a male aged 65 and older, who lived in a high socioeconomic status zip code. DBS patients had an average of four comorbidities. With respect to outcomes, the majority of patients were discharged home (95.3%). Non-elective readmission was rare (4.9%), and was associated with socioeconomic status, comorbidity burden, and teaching hospital status. Much higher acute, non-elective readmission rates were observed for common procedures such as upper gastrointestinal endoscopy (16.2%), colonoscopy (14.0%), and cardiac defibrillator and pacemaker procedures (11.1%). CONCLUSION: Short-term hospitalization outcomes after DBS are generally favorable. Socioeconomic disparities in DBS use persist. Additional efforts may be needed to improve provider referrals for and patient access to DBS.


Subject(s)
Deep Brain Stimulation/statistics & numerical data , Outcome Assessment, Health Care/statistics & numerical data , Parkinson Disease/epidemiology , Parkinson Disease/therapy , Patient Readmission/statistics & numerical data , Acute Disease , Adult , Aged , Aged, 80 and over , Comorbidity , Databases, Factual , Deep Brain Stimulation/adverse effects , Female , Healthcare Disparities , Humans , Male , Middle Aged , Risk Factors , Social Class , United States/epidemiology
18.
Magn Reson Imaging ; 65: 114-128, 2020 01.
Article in English | MEDLINE | ID: mdl-31629074

ABSTRACT

The thalamus serves as the central relay station for the brain. It processes and relays sensory and motor signals between different subcortical regions and the cerebral cortex and it can be divided into several neuronal clusters referred to as nuclei. Each of these can possibly be subdivided into sub-nuclei. Accurate and reliable identification of thalamic nuclei is important for surgical interventions and neuroanatomical studies. This is however a challenging task because the small size of the nuclei and the lack of contrast over the thalamus region in clinically acquired images does not permit the visualization of their boundaries. A number of methods have been developed for thalamus parcellation but the vast majority of these relies on diffusion imaging or functional imaging. The low resolution of these images only permit localizing the largest nuclei. In this work we propose a method to segment smaller nuclei. We first present a protocol to build histological-like atlases from a series of high-field (7 Tesla) MR images acquired with different pulse sequences that each permits to visualize the boundaries of a subset of the nuclei. We use this protocol to scan 9 subjects and we manually delineate 23 thalamic nuclei following the Morel atlas naming convention for each of these subjects. Manual contours for the nuclei are subsequently utilized to create statistical shape models. With these data, we compare four methods for the segmentation of thalamic nuclei in 3 T images we have also acquired for the 9 subjects included in the study: (1) single atlas, (2) multi atlas, (3) statistical shape, and (4) hierarchical statistical shape in which thalamic nuclei are hierarchically fitted to the images, starting from the largest ones. Results of a leave-one-out validation study conducted on the nine image sets we have acquired show that the multi atlas approach improves upon the single atlas approach for most nuclei. Segmentations obtained with the hierarchical statistical shape model yield the highest accuracy, with dice coefficients ranging from 0.53 to 0.90, mean surface errors from 0.27 mm to 0.64 mm, and maximum surface errors from 1.31 mm to 2.52 mm for all nuclei averaged across test cases. This suggests the feasibility of using such approach for localizing thalamic substructures in clinically acquired MR volumes. It may have a direct impact on surgeries such as Deep Brain Stimulation procedures that require the implantation of stimulating electrodes in specific thalamic nuclei.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging , Adult , Brain/diagnostic imaging , Female , Humans , Male , Models, Statistical , Reproducibility of Results
19.
Front Neurosci ; 13: 936, 2019.
Article in English | MEDLINE | ID: mdl-31572109

ABSTRACT

The annual deep brain stimulation (DBS) Think Tank aims to create an opportunity for a multidisciplinary discussion in the field of neuromodulation to examine developments, opportunities and challenges in the field. The proceedings of the Sixth Annual Think Tank recapitulate progress in applications of neurotechnology, neurophysiology, and emerging techniques for the treatment of a range of psychiatric and neurological conditions including Parkinson's disease, essential tremor, Tourette syndrome, epilepsy, cognitive disorders, and addiction. Each section of this overview provides insight about the understanding of neuromodulation for specific disease and discusses current challenges and future directions. This year's report addresses key issues in implementing advanced neurophysiological techniques, evolving use of novel modulation techniques to deliver DBS, ans improved neuroimaging techniques. The proceedings also offer insights into the new era of brain network neuromodulation and connectomic DBS to define and target dysfunctional brain networks. The proceedings also focused on innovations in applications and understanding of adaptive DBS (closed-loop systems), the use and applications of optogenetics in the field of neurostimulation and the need to develop databases for DBS indications. Finally, updates on neuroethical, legal, social, and policy issues relevant to DBS research are discussed.

20.
Epilepsia ; 60(6): 1171-1183, 2019 06.
Article in English | MEDLINE | ID: mdl-31112302

ABSTRACT

OBJECTIVE: Laser interstitial thermal therapy (LITT) for mesial temporal lobe epilepsy (mTLE) has reported seizure freedom rates between 36% and 78% with at least 1 year of follow-up. Unfortunately, the lack of robust methods capable of incorporating the inherent variability of patient anatomy, the variability of the ablated volumes, and clinical outcomes have limited three-dimensional quantitative analysis of surgical targeting and its impact on seizure outcomes. We therefore aimed to leverage a novel image-based methodology for normalizing surgical therapies across a large multicenter cohort to quantify the effects of surgical targeting on seizure outcomes in LITT for mTLE. METHODS: This multicenter, retrospective cohort study included 234 patients from 11 centers who underwent LITT for mTLE. To investigate therapy location, all ablation cavities were manually traced on postoperative magnetic resonance imaging (MRI), which were subsequently nonlinearly normalized to a common atlas space. The association of clinical variables and ablation location to seizure outcome was calculated using multivariate regression and Bayesian models, respectively. RESULTS: Ablations including more anterior, medial, and inferior temporal lobe structures, which involved greater amygdalar volume, were more likely to be associated with Engel class I outcomes. At both 1 and 2 years after LITT, 58.0% achieved Engel I outcomes. A history of bilateral tonic-clonic seizures decreased chances of Engel I outcome. Radiographic hippocampal sclerosis was not associated with seizure outcome. SIGNIFICANCE: LITT is a viable treatment for mTLE in patients who have been properly evaluated at a comprehensive epilepsy center. Consideration of surgical factors is imperative to the complete assessment of LITT. Based on our model, ablations must prioritize the amygdala and also include the hippocampal head, parahippocampal gyrus, and rhinal cortices to maximize chances of seizure freedom. Extending the ablation posteriorly has diminishing returns. Further work is necessary to refine this analysis and define the minimal zone of ablation necessary for seizure control.


Subject(s)
Epilepsy, Temporal Lobe/surgery , Laser Therapy/methods , Adolescent , Adult , Aged , Aged, 80 and over , Amygdala/diagnostic imaging , Child , Cohort Studies , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Tonic-Clonic/diagnostic imaging , Epilepsy, Tonic-Clonic/surgery , Female , Humans , Laser Therapy/adverse effects , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Seizures/surgery , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...