Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 33(10): 1817-1828, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30239786

ABSTRACT

STUDY QUESTION: Is the determination of antioxidants, oxidative/nitrosative stress-related compounds, purines, pyrimidines and energy-related metabolites in human seminal plasma of utility to evidence biomarkers related to male infertility? SUMMARY ANSWER: The determination of 26 metabolites in seminal plasma allowed to evidence that 21/26 of them are biomarkers of male infertility, as well as to calculate a cumulative index, named Biomarker Score, that fully discriminates fertile controls from infertile patients and partially differentiates infertile without from infertile with spermiogram anomalies. WHAT IS KNOWN ALREADY: Epidemiological studies indicated that a male factor is involved in ~50% of cases of pregnancy failure, with a significant percentage of infertile males having no alterations in the spermiogram. Further laboratory analyses of male infertility are mainly dedicated only to gross evaluations of oxidative stress or total antioxidant capacity. STUDY DESIGN, SIZE, DURATION: Seminal plasma of 48 fertile controls and 96 infertile patients (master group), were collected from September 2016 to February 2018. A second group of 44 infertile patients (validation group) was recruited in a second, independent centre from September 2017 to March 2018. Samples were analysed in blind using a 'Redox Energy Test' to determine various low-molecular weight compounds, with the aim of finding metabolic profiles and biomarkers related to male infertility. PARTICIPANTS/MATERIALS, SETTING, METHODS: In all seminal plasma, 26 water- and fat-soluble compounds (related to antioxidant defences, oxidative/nitrosative stress, purine, pyrimidine and energy metabolism) were analysed using high-performance liquid chromatographic methods. According to spermiogram, infertile patients of both groups were also categorized into normozoospermic (N, no anomalies in the spermiogram), or into the subgroup including all patients with anomalies in the spermiogram (asthenoteratooligozoospermic ATO + asthenozoospermic A + teratozoospermic T + oligozoospermic O). MAIN RESULTS AND THE ROLE OF CHANCE: In the master group, results indicated that 21/26 compounds assayed in seminal plasma of infertile males were significantly different from corresponding values determined in fertile controls. These 21 compounds constituted the male infertility biomarkers. Similar results were recorded in patients of the validation group. Using an index cumulating the biochemical seminal plasma anomalies (Biomarker Score), we found that fertile controls had mean Biomarker Score values of 2.01 ± 1.42, whilst infertile patients of the master and of the validation group had mean values of 12.27 ± 3.15 and of 11.41 ± 4.09, respectively (P < 0.001 compared to controls). The lack of statistical differences between the master and the validation groups, in both the metabolic profiles and the Biomarker Score values, allowed to pool patients into a single cohort of infertile males. The Biomarker Score values showed that fertile controls and infertile males clustered into two distinct groups. Infertile patients without (N, n = 42) or with (ATO + A + T + O, n = 98) spermiogram anomalies differed in some biomarkers (ascorbic acid, all-trans retinol, α-tocopherol, cytidine, uridine, guanine). These differences were reinforced by distribution frequencies and posterior probability curves of the Biomarker Score in the three groups. LIMITATIONS, REASONS FOR CAUTION: Results were obtained in relatively limited number of human seminal plasma samples. Using the 'Redox Energy Test' it was possible to associate specific metabolic profiles and values of the Biomarker Score to fertile controls or infertile males. However, it was not possible to evaluate whether the different anomalies of the spermiogram are associated with specific metabolic profiles and values of the Biomarker Score. WIDER IMPLICATIONS OF THE FINDINGS: The 'Redox Energy Test', coupled with the Biomarker Score that cumulates the biochemical characteristics of seminal plasma into a single index, evidenced a set of low-molecular weight biomarkers potentially useful in the laboratory management of male infertility. STUDY FUNDING/COMPETING INTEREST(S): The study was partly funded with research grants from the University of Catania. None of the authors have any conflicting interests to declare.


Subject(s)
Antioxidants/metabolism , Asthenozoospermia/blood , Asthenozoospermia/metabolism , Oligospermia/metabolism , Semen/metabolism , Spermatozoa/metabolism , Adult , Antioxidants/analysis , Biomarkers/metabolism , Case-Control Studies , Humans , Male , Middle Aged , Molecular Weight , Nitrosative Stress , Oxidative Stress , Sperm Count , Sperm Motility
2.
J Chromatogr A ; 1527: 43-52, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29106966

ABSTRACT

Fat-soluble vitamins and antioxidants are of relevance in health and disease. Current methods to extract these compounds from biological fluids mainly need use of multi-steps and multi organic solvents. They are time-consuming and difficult to apply to treat simultaneously large sample number. We here describe a single-step, one solvent extraction of fat-soluble vitamins and antioxidants from biological fluids, and the chromatographic separation of all-trans-retinoic acid, 25-hydroxycholecalciferol, all-trans-retinol, astaxanthin, lutein, zeaxanthin, trans-ß-apo-8'-carotenal, γ-tocopherol, ß-cryptoxanthin, α-tocopherol, phylloquinone, lycopene, α-carotene, ß-carotene and coenzyme Q10. Extraction is obtained by adding one volume of biological fluid to two acetonitrile volumes, vortexing for 60s and incubating for 60min at 37°C under agitation. HPLC separation occurs in 30min using Hypersil C18, 100×4.6mm, 5µm particle size column, gradient from 70% methanol+30% H2O to 100% acetonitrile, flow rate of 1.0ml/min and 37°C column temperature. Compounds are revealed using highly sensitive UV-VIS diode array detector. The HPLC method suitability was assessed in terms of sensitivity, reproducibility and recovery. Using the present extraction and chromatographic conditions we obtained values of the fat-soluble vitamins and antioxidants in serum from 50 healthy controls similar to those found in literature. Additionally, the profile of these compounds was also measured in seminal plasma from 20 healthy fertile donors. Results indicate that this simple, rapid and low cost sample processing is suitable to extract fat-soluble vitamins and antioxidants from biological fluids and can be applied in clinical and nutritional studies.


Subject(s)
Antioxidants/analysis , Blood Chemical Analysis/methods , Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid , Semen/chemistry , Vitamins/analysis , Vitamins/blood , Carotenoids/analysis , Humans , Lycopene , Male , Reproducibility of Results , Sensitivity and Specificity
3.
Neurochem Res ; 40(5): 991-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25898931

ABSTRACT

Traumatic brain injury (TBI) is a leading and rising cause of death and disability worldwide. There is great interest in S100B and Glial Fibrillary Acid Protein (GFAP) as candidate biomarkers of TBI for diagnosis, triage, prognostication and drug development. However, conflicting results especially on S100B hamper their routine application in clinical practice. To try to address this question, we mimicked TBI damage utilizing a well-validated, simplified in vitro model of graded stretch injury induced in rat organotypic hippocampal slice cultures (OHSC). Different severities of trauma, from mild to severe, have been tested by using an equi-biaxial stretch of the OHSCs at a specified Lagrangian strain of 0 (controls), 5, 10, 20 and 50 %. OHSC were analysed at 3, 6, 18, 24, 48 and 96 h post-injury. Cell death, gene expressions and release into the culture medium of S100B and GFAP were determined at each time point. Gene expression and release of S100B slightly increased only in 20 and 50 % stretched OHSC. GFAP over-expression occurred in 10, 20 and 50 % and was inversely correlated with time post-injury. GFAP release significantly increased with time at any level of injury (p < 0.01 with respect to controls). Consequently, the total amount of GFAP released showed a strong linear relationship with the severity of injury (R(2) = 0.7662; p < 0.001). Under these experimental conditions, S100B seems to be useful in diagnosing only moderate to severe TBI-like injuries. Differently, GFAP demonstrates adequate biomarker requisites since its cellular release is affected by all grades of injury severity.


Subject(s)
Brain Injuries/metabolism , Brain Injuries/pathology , Disease Models, Animal , Glial Fibrillary Acidic Protein/biosynthesis , S100 Calcium Binding Protein beta Subunit/biosynthesis , Severity of Illness Index , Animals , Biomarkers/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Organ Culture Techniques , Rats , Rats, Wistar
4.
Free Radic Biol Med ; 69: 258-64, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24491879

ABSTRACT

Neuroglobin is a neuron-specific hexacoordinated globin capable of binding various ligands, including O2, NO, and CO, the biological function of which is still uncertain. Various studies seem to indicate that neuroglobin is a neuroprotective agent when overexpressed, acting as a potent inhibitor of oxidative and nitrosative stress. In this study, we evaluated the pathophysiological response of the neuroglobin gene and protein expression in the cerebral tissue of rats sustaining traumatic brain injury of differing severity, while simultaneously measuring the oxidant/antioxidant balance. Two levels of trauma (mild and severe) were induced in anesthetized animals using the weight-drop model of diffuse axonal injury. Rats were then sacrificed at 6, 12, 24, 48, and 120 h after traumatic brain injury, and the gene and protein expression of neuroglobin and the concentrations of malondialdehyde (as a parameter representative of reactive oxygen species-mediated damage), nitrite + nitrate (indicative of NO metabolism), ascorbate, and glutathione (GSH) were determined in the brain tissue. Results indicated that mild traumatic brain injury, although causing a reversible increase in oxidative/nitrosative stress (increase in malondialdehyde and nitrite + nitrate) and an imbalance in antioxidants (decrease in ascorbate and GSH), did not induce any change in neuroglobin. Conversely, severe traumatic brain injury caused an over nine- and a fivefold increase in neuroglobin gene and protein expression, respectively, as well as a remarkable increase in oxidative/nitrosative stress and depletion of antioxidants. The results of this study, showing a lack of effect in mild traumatic brain injury as well as asynchronous time course changes in neuroglobin expression, oxidative/nitrosative stress, and antioxidants in severe traumatic brain injury, do not seem to support the role of neuroglobin as an endogenous neuroprotective antioxidant agent, at least under pathophysiological conditions.


Subject(s)
Antioxidants/metabolism , Brain Injuries/metabolism , Globins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Oxidants/metabolism , Animals , Brain Injuries/pathology , Brain Injuries/therapy , Globins/genetics , Glutathione/metabolism , Nerve Tissue Proteins/genetics , Neuroglobin , Nitrosation , Oxidative Stress/genetics , Rats , Reactive Oxygen Species/metabolism
5.
Mol Cell Biochem ; 359(1-2): 205-16, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21837404

ABSTRACT

Physiologic concentration in amniotic fluid (AF) of several metabolites has not been established with certainty. In this study, we initially assayed purines, pyrimidines, and amino compounds in 1,257 AF withdrawn between the 15th and the 20th week of gestation from actually normal pregnancies (normal gestations, normal offspring). Results allowed to determine physiologic reference intervals for 45 compounds. In these AF, not all purines and pyrimidines were detectable and uric acid (238.35±76.31 µmol/l) had the highest concentration. All amino compounds were measurable, with alanine having the highest concentration (401.10±88.47 µmol/l). In the second part of the study, we performed a blind metabolic screening of AF to evaluate the utility of this biochemical analysis as an additional test in amniocenteses. In 1,295 additional AF from normal pregnancies, all metabolites fell within the confidence intervals determined in the first part of the study. In 24 additional AF from women carrying Down's syndrome-affected fetuses, glutamate, glutamine, glycine, taurine, valine, isoleucine, leucine, ornithine, and lysine were different from physiologic reference values. One AF sample showed phenylalanine level of 375.54 µmol/l (mean value in normal AF=65.07 µmol/l) and was from a woman with unreported phenylketonuria with mild hyperphenylalaninemia (serum phenylalanine=360.88 µmol/l), carrying the IVS 4+5 G-T and D394A mutations. The fetus was heterozygote for the maternal D394A mutation. An appropriate diet maintained the mother phenylalanine in the range of normality during pregnancy, avoiding serious damage in fetal and neonatal development. These results suggest that the metabolic screening of AF might be considered as an additional biochemical test in amniocenteses useful to highlight anomalies potentially related to IEM.


Subject(s)
Amniocentesis/methods , Amniotic Fluid/chemistry , Metabolism, Inborn Errors/diagnosis , Metabolome , Amines/analysis , Amniotic Fluid/metabolism , Down Syndrome , Female , Humans , Mass Screening , Metabolism, Inborn Errors/metabolism , Pregnancy , Purines/analysis , Pyrimidines/analysis
6.
Mult Scler Int ; 2011: 167156, 2011.
Article in English | MEDLINE | ID: mdl-22096628

ABSTRACT

Multiple sclerosis (MS) is a progressive demyelinating process considered as an autoimmune disease, although the causes of this pathology have not been yet fully established. Similarly to other neurodegenerations, MS is characterized by a series of biochemical changes affecting to different extent neuronal functions; great attention has been given to oxidative/nitrosative stress and to alterations in mitochondrial functions. According to previous data, MS patients show significant changes in the circulating concentrations of different metabolites, although it is still unclear whether uric acid undergoes to decrease, increase, or no change under this pathological condition. In this study, we report the serum metabolic profile in terms of purines, pyrimidines, creatinine, malondialdehyde, ascorbic acid, nitrite, and nitrate in a group of 170 MS patients. The results show increase in circulating uric acid and other oxypurines (hypoxanthine and xanthine), as well as in uridine and ß-pseudouridine. The concomitant increase in circulating creatinine, malondialdehyde, nitrite, and nitrate, and decrease in ascorbic acid, demonstrates that MS induces alteration in energy metabolism and in oxidants/antioxidants balance that can be monitored in serum of MS patients.

7.
Eur J Appl Physiol ; 111(3): 549-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20931219

ABSTRACT

This study was designed to examine the influence of sub-maximal exercise on purine and pyrimidine catabolism in horses. Ten horses were initially trained for 12 weeks at the end of which they underwent a standardized exercise test (SET); venous blood samples were taken at rest, 5 and 30 min after the SET. Six untrained healthy horses, from which a blood withdrawal was taken at rest, were used as the control group. Samples were analyzed by HPLC for the simultaneous determination of uric acid, uridine, ß-pseudouridine and creatinine in plasma. Glucose and lactate were measured in blood. Trained horses had basal uridine levels significantly lower than sedentary horses. The SET caused significant increase in plasma uric acid, uridine, ß-pseudouridine and creatinine. Following the SET, a significant negative correlation was found between plasma uridine and glucose, whilst a significant positive correlation was observed between plasma uric acid and creatinine. These results indicate that increase in energy demand during exercise in the horse causes not only the degradation of purine but also of pyrimidine compounds, the latter possibly exerting a control on glucose uptake as also demonstrated in human beings.


Subject(s)
Horses , Physical Conditioning, Animal/physiology , Purines/blood , Pyrimidines/blood , Animals , Chromatography, High Pressure Liquid , Creatinine/blood , Exercise Test/veterinary , Female , Horses/blood , Horses/physiology , Male , Motor Activity/physiology , Purines/analysis , Pyrimidines/analysis , Uric Acid/analysis , Uric Acid/blood
8.
Mol Cell Biochem ; 333(1-2): 269-77, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19688182

ABSTRACT

In this study, the concentrations of creatine (Cr), creatine phosphate (CrP), N-acetylaspartate (NAA), ATP, ADP and phosphatidylcholine (PC) were measured at different time intervals after mild traumatic brain injury (mTBI) in whole brain homogenates of rats. Anaesthetized animals underwent to the closed-head impact acceleration "weight-drop" model (450 g delivered from 1 m height = mild traumatic brain injury) and were killed at 2, 6, 24, 48 and 120 h after the insult (n = 6 for each time point). Sham-operated rats (n = 6) were used as controls. Compounds of interest were synchronously measured by HPLC in organic solvent deproteinized whole brain homogenates. A reversible decrease of all metabolites but PC was observed, with minimal values recorded at 24 h post-injury (minimum of CrP = 48 h after impact). In particular, Cr and NAA showed a decrease of 44.5 and 29.5%, respectively, at this time point. When measuring NAA in relation to other metabolites, as it is commonly carried out in "in vivo" (1)H-magnetic resonance spectroscopy ((1)H-MRS), an increase in the NAA/Cr ratio and a decrease in the NAA/PC ratio was observed. Besides confirming a transient alteration of NAA homeostasis and ATP imbalance, our results clearly show significant changes in the cerebral concentration of Cr and CrP after mTBI. This suggests a careful use of the NAA/Cr ratio to measure NAA by (1)H-MRS in conditions of altered cerebral energy metabolism. Viceversa, the NAA/PC ratio appears to be a better indicator of actual NAA levels during energy metabolism impairment. Furthermore, our data suggest that, under pathological conditions affecting the brain energetic, the Cr-CrP system is not a suitable tool to buffer possible ATP depletion in the brain, thus supporting the growing indications for alternative roles of cerebral Cr.


Subject(s)
Aspartic Acid/analogs & derivatives , Brain Injuries/metabolism , Creatine/metabolism , Energy Metabolism , Phosphates/metabolism , Phosphocreatine/metabolism , Adenosine Triphosphate/metabolism , Animals , Aspartic Acid/metabolism , Brain Chemistry , Kinetics , Rats
9.
Clin Biochem ; 42(10-11): 1001-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19341721

ABSTRACT

OBJECTIVES: In this study, the concentrations of uric acid, purine profile and creatinine in samples of cerebrospinal fluid and serum of multiple sclerosis (MS) patients were measured by HPLC and compared with corresponding values recorded in patients without MS (cerebrospinal fluid) and healthy subjects (serum). DESIGN AND METHODS: All samples were deproteinized with ultrafiltration (which ensures minimal sample manipulation and efficient protein removal) and then assayed for the synchronous HPLC separation of uric acid, hypoxanthine, xanthine, inosine, adenosine, guanosine and creatinine. RESULTS: The values of all compounds assayed were significantly higher in both biological fluids of MS patients with respect to values measured in controls. In particular, serum hypoxanthine, xanthine, uric acid and sum of oxypurines were, respectively, 3.17, 3.11, 1.23 and 1.27-fold higher in these patients than corresponding values recorded in controls (p<0.001). CONCLUSIONS: Differently from what previously reported, we here demonstrate that all purine compounds, including uric acid, are elevated in biological fluids of MS patients. Reinforced by the trend observed for creatinine, this corroborates the notion of sustained purine catabolism, possibly due to imbalance in ATP homeostasis, under these pathological conditions. These results cast doubt on the hypothesis that uric acid is depleted in MS because of increased oxidative stress, rather suggesting that this disease causes a generalized increase in purine catabolism. As observed in other pathological states, uric acid, purine compounds and creatinine, can be considered markers of metabolic energy imbalance rather than of reactive oxygen species, even in MS.


Subject(s)
Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Purines/blood , Purines/cerebrospinal fluid , Uric Acid/blood , Uric Acid/cerebrospinal fluid , Case-Control Studies , Health , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...