Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 17(2): e1009339, 2021 02.
Article in English | MEDLINE | ID: mdl-33524049

ABSTRACT

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.


Subject(s)
Collagen Type I/genetics , HSP47 Heat-Shock Proteins/genetics , Mutation, Missense , Osteogenesis Imperfecta/genetics , Amino Acid Sequence , Cells, Cultured , Child, Preschool , Collagen Type I/metabolism , Fatal Outcome , Female , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/metabolism , Humans , Infant , Infant, Newborn , Models, Molecular , Osteogenesis Imperfecta/metabolism , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
2.
Matrix Biol ; 70: 72-83, 2018 09.
Article in English | MEDLINE | ID: mdl-29551664

ABSTRACT

Type III collagen is a major fibrillar collagen consisting of three identical α1(III)-chains that is particularly present in tissues exhibiting elastic properties, such as the skin and the arterial wall. Heterozygous mutations in the COL3A1 gene result in vascular Ehlers-Danlos syndrome (vEDS), a severe, life-threatening disorder, characterized by thin, translucent skin and propensity to arterial, intestinal and uterine rupture. Most human vEDS cases result from a missense mutation substituting a crucial glycine residue in the triple helical domain of the α1(III)-chains. The mechanisms by which these mutant type III collagen molecules cause dermal and vascular fragility are not well understood. We generated a transgenic mouse line expressing mutant type III collagen, containing a typical helical glycine substitution (p.(Gly182Ser)). This Col3a1Tg-G182S mouse line displays a phenotype recapitulating characteristics of human vEDS patients with signs of dermal and vascular fragility. The Col3a1Tg-G182S mice develop severe transdermal skin wounds, resulting in early demise at 13-14weeks of age. We found that this phenotype was associated with a reduced total collagen content and an abnormal collagen III:I ratio, leading to the production of severely malformed collagen fibrils in the extracellular matrix of dermal and arterial tissues. These results indicate that expression of the glycine substitution in the α1(III)-chain disturbs formation of heterotypic type III:I collagen fibrils, and thereby demonstrate a key role for type III collagen in collagen fibrillogenesis in dermal and arterial tissues.


Subject(s)
Amino Acid Substitution , Arteries/metabolism , Collagen Type III/genetics , Ehlers-Danlos Syndrome/genetics , Mutation , Skin/metabolism , Animals , Arteries/pathology , Collagen Type III/chemistry , Collagen Type III/deficiency , Disease Models, Animal , Ehlers-Danlos Syndrome/metabolism , Ehlers-Danlos Syndrome/mortality , Ehlers-Danlos Syndrome/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Glycine/chemistry , Glycine/metabolism , Heterozygote , Humans , Male , Mice , Mice, Transgenic , Serine/chemistry , Serine/metabolism , Sex Factors , Skin/pathology , Tissue Culture Techniques
3.
Genet Med ; 20(6): 562-573, 2018 06.
Article in English | MEDLINE | ID: mdl-28981071

ABSTRACT

PurposeWithin the spectrum of the Ehlers-Danlos syndromes (EDS), vascular complications are usually associated with the vascular subtype of EDS. Vascular complications are also observed in other EDS subtypes, but the reports are anecdotal and the information is dispersed. To better document the nature of vascular complications among "nonvascular" EDS subtypes, we performed a systematic review.MethodsWe queried three databases for English-language studies from inception until May 2017, documenting both phenotypes and genotypes of patients with nonvascular EDS subtypes. The outcome included the number and nature of vascular complications.ResultsA total of 112 papers were included and data were collected from 467 patients, of whom 77 presented with a vascular phenotype. Severe complications included mainly hematomas (53%), frequently reported in musculocontractural and classical-like EDS; intracranial hemorrhages (18%), with a high risk in dermatosparaxis EDS; and arterial dissections (16%), frequently reported in kyphoscoliotic and classical EDS. Other, more minor, vascular complications were reported in cardiac-valvular, arthrochalasia, spondylodysplastic, and periodontal EDS.ConclusionPotentially life-threatening vascular complications are a rare but important finding in several nonvascular EDS subtypes, highlighting a need for more systematic documentation. This review will help familiarize clinicians with the spectrum of vascular complications in EDS and guide follow-up and management.


Subject(s)
Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/physiopathology , Ehlers-Danlos Syndrome/metabolism , Female , Humans , Male , Phenotype
4.
Am J Hum Genet ; 97(4): 521-34, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26365339

ABSTRACT

The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.


Subject(s)
Cilia/genetics , Ciliary Motility Disorders/genetics , Craniofacial Abnormalities/genetics , Membrane Proteins/genetics , Mutation/genetics , Ossification, Heterotopic/genetics , Osteochondrodysplasias/genetics , Amino Acid Sequence , Animals , Body Patterning , Cell Differentiation , Cell Movement , Cilia/metabolism , Cilia/pathology , Embryo, Nonmammalian/abnormalities , Female , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Male , Membrane Proteins/metabolism , Molecular Sequence Data , Neural Crest/cytology , Neural Crest/metabolism , Pedigree , Protein Transport , Sequence Homology, Amino Acid , Signal Transduction , Zebrafish/embryology , Zebrafish/genetics
5.
Orphanet J Rare Dis ; 8: 154, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24079343

ABSTRACT

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous brittle bone disorder. Whereas dominant OI is mostly due to heterozygous mutations in either COL1A1 or COL1A2, encoding type I procollagen, recessive OI is caused by biallelic mutations in genes encoding proteins involved in type I procollagen processing or chaperoning. Hitherto, some OI cases remain molecularly unexplained. We detected a homozygous genomic deletion of CREB3L1 in a family with severe OI. CREB3L1 encodes OASIS, an endoplasmic reticulum-stress transducer that regulates type I procollagen expression during murine bone formation. This is the first report linking CREB3L1 to human recessive OI, thereby expanding the OI gene spectrum.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Nerve Tissue Proteins/metabolism , Osteogenesis Imperfecta/metabolism , Collagen Type I/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/physiology , Female , Humans , Infant, Newborn , Male , Nerve Tissue Proteins/genetics , Osteogenesis Imperfecta/genetics , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL