Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513363

ABSTRACT

Theobroma cacao agro-industrial waste (WTC) has been characterized and tested as an effective biosorbent to remove Cd(II) from aqueous media. At the optimum pH of 5.0, a maximum adsorption capacity of qe,max = 58.5 mg g-1 was determined. The structural and morphological characterization have been conducted by FTIR, SEM/EDX, and TGA measurements. The SEM/EDX results confirmed that the metals are adsorbed on the surface. C-O-C, OH, CH, NH, and C=O functional groups were identified by FTIR. TGA results were consistent with the presence of hemicellulose. Biosorption kinetics were rapid during the first 30 min and then reached equilibrium. The corresponding experimental data were well fitted to pseudo-first and -second order models, the latter being the best. The biosorption isotherm data were also well fitted to Temkin, Langmuir, and Freundlich models, showing that several sorption mechanisms may be involved in the Cd(II) biosorption process, which was characterized as exothermic (ΔH0 < 0), feasible, and spontaneous (ΔG0 < 0). In binary (Cd-Pb and Cd-Cu) and ternary (Cd-Pb-Cu) systems, Cu(II) and particularly Pb(II) co-cations exert strong antagonistic effects. Using HNO3, effective good regeneration of WTC was obtained to efficiently remove Cd(II) up to three times.

2.
Molecules ; 28(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298927

ABSTRACT

In this study, cladodes of Opuntia ficus indica (OFIC), chemically modified with NaOH (OFICM), have been prepared, characterized, and tested as an effective biomass to remove Pb(II) and/or Cd(II) from aqueous media. At an optimum pH of 4.5, the adsorption capacity, qe, of treated OFICM was almost four times higher than that of untreated OFIC. The maximum adsorption capacities (qmax) in the single removal of Pb(II) and Cd(II) were 116.8 and 64.7 mg g-1, respectively. These values were 12.1% and 70.6% higher than those for the corresponding qmax in binary removal, which indicates the strong inhibitive effect of Pb(II) on the co-cation Cd(II) in a binary system. Structural and morphological characterization have been carried out by FTIR, SEM/EDX, and point of zero charge (pHPZC) measurements. The SEM/EDX results confirmed that the metals are adsorbed on the surface. The presence of C-O, C=O, and COO- functional groups were identified by FTIR on both OFIC and OFICM surfaces. On the other hand, we found that the adsorption processes followed the pseudo-second-order kinetics for both single and binary systems, with a fast biosorption rate of Pb(II) and Cd(II). The equilibrium data (adsorption isotherms) were better described by Langmuir and modified-Langmuir models for single and binary systems, respectively. A good regeneration of OFICM was obtained with an eluent of 0.1 M HNO3. Therefore, OFICM can be efficiently reused to remove Pb or Cd, up to three times.


Subject(s)
Opuntia , Water Pollutants, Chemical , Cadmium/analysis , Opuntia/chemistry , Lead , Water Pollutants, Chemical/analysis , Biomass , Adsorption , Kinetics , Hydrogen-Ion Concentration
3.
ACS Omega ; 8(15): 13993-14004, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091389

ABSTRACT

Mössbauer and X-ray photoelectron spectroscopies (XPS) are complemented with high-level quantum-chemical computations in the study of the geometric and electronic structure of the paramagnetic salt of the metallacarborane sandwich complex [Fe(1,2-C2B9H11)2]Cs = FeSanCs. Experimental 57Fe isomer shifts and quadrupole splitting parameters are compared with the theoretical prediction, with good agreement. The appearance of two sets of Cs(3d) doublets in the XPS spectrum, separated by 2 eV, indicates that Cs has two different chemical environments due to ease of the Cs(+) cation moving around the sandwich complex with low-energy barriers, as confirmed by quantum-chemical computations. Several minimum-energy geometries of the FeSanCs structure with the corresponding energies and Mössbauer parameters are discussed, in particular the atomic charges and spin population and the surroundings of the Fe atom in the complex. The Mössbauer spectra were taken at different temperatures showing the presence of a low-spin Fe atom with S = 1/2 and thus confirming a paramagnetic FeIII species.

4.
Molecules ; 28(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36677741

ABSTRACT

Arabica-coffee and Theobroma-cocoa agroindustrial wastes were treated with NaOH and characterized to efficiently remove Pb(II) from the aqueous media. The maximum Pb(II) adsorption capacities, qmax, of Arabica-coffee (WCAM) and Theobroma-cocoa (WCTM) biosorbents (qmax = 303.0 and 223.1 mg·g−1, respectively) were almost twice that of the corresponding untreated wastes and were higher than those of other similar agro-industrial biosorbents reported in the literature. Structural, chemical, and morphological characterization were performed by FT-IR, SEM/EDX, and point of zero charge (pHPZC) measurements. Both the WCAM and WCTM biosorbents showed typical uneven and rough cracked surfaces including the OH, C=O, COH, and C-O-C functional adsorbing groups. The optimal Pb(II) adsorption, reaching a high removal efficiency %R (>90%), occurred at a pH between 4 and 5 with a biosorbent dose of 2 g·L−1. The experimental data for Pb(II) adsorption on WACM and WCTM were well fitted with the Langmuir-isotherm and pseudo-second order kinetic models. These indicated that Pb(II) adsorption is a chemisorption process with the presence of a monolayer mechanism. In addition, the deduced thermodynamic parameters showed the endothermic (ΔH0 > 0), feasible, and spontaneous (ΔG0 < 0) nature of the adsorption processes studied.


Subject(s)
Cacao , Coffea , Water Pollutants, Chemical , Coffee , Lead , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Thermodynamics , Water/chemistry , Kinetics , Adsorption
5.
Environ Sci Pollut Res Int ; 30(2): 2991-3001, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35934741

ABSTRACT

Agro-industrial waste biosorbents of arabica-coffee (WCA) and theobroma-cocoa (WCT) have been characterized and tested to remove Pb(II) from aqueous media. The maximum adsorption capacity of WCA and WCT (qmax = 158.7 and 123.5 mg·g-1, respectively) is comparable or even higher than for several other similar agro-industrial waste biosorbents reported in the literature. Structural and morphological characterization were performed by infrared spectrometry with Fourier transform (FT-IR), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), and charge measurements at the zero point charge (pHPZC). Both biosorbents, WCA and WCT, show cracked surfaces with heterogeneous plates which ones include functional adsorption groups such as OH, C = O and C-O-C. Optimal Pb(II) adsorption occurs for a pH between 4 and 5 at [WCA] and [WCT] dose concentrations of 2 g·L-1. We found that the adsorption process follows pseudo-second order kinetics with a rapid growth rate (almost six times larger for WCA than for WCT), basically controlled by the chemisorption process. The regeneration of both biosorbents was carried out in an eluent of 0.1M HNO3 and they can be efficiently reused up to 5 times.


Subject(s)
Cacao , Water Pollutants, Chemical , Industrial Waste/analysis , Coffee , Lead/analysis , Spectroscopy, Fourier Transform Infrared , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
6.
Molecules ; 28(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615462

ABSTRACT

A new biosorbent based on Nostoc commune (NC) cyanobacteria, chemically modified with NaOH (NCM), has been prepared, characterized and tested as an effective biomass to remove Pb(II) in aqueous media. The adsorption capacity of NCM was determined to be qe = 384.6 mg g−1. It is higher than several other biosorbents reported in the literature. Structural and morphological characterization were performed by FTIR, SEM/EDX and point zero of charge pH (pHPZC) measurements. NCM biosorbent showed more porous surfaces than those NC with heterogeneous plates including functional adsorption groups such as OH, C = O, COO−, COH or NH. Optimal Pb(II) adsorption occurred at pH 4.5 and 5.5 with a biomass dose of 0.5 g L−1. The experimental data of the adsorption process were well fitted with the Freundlich-isotherm model and pseudo-2nd order kinetics, which indicated that Pb(II) adsorption was a chemisorption process on heterogeneous surfaces of NCM. According to the thermodynamic parameters, this process was exothermic (∆H0 < 0), feasible and spontaneous (∆G0 < 0). NCM can be regenerated and efficiently reused up to 4 times (%D > 92%). NCM was also tested to remove Pb (%R~98%) and Ca (%R~64%) from real wastewater.


Subject(s)
Nostoc commune , Water Pollutants, Chemical , Lead , Biomass , Water Pollutants, Chemical/chemistry , Thermodynamics , Kinetics , Adsorption , Hydrogen-Ion Concentration
7.
J Am Soc Mass Spectrom ; 32(8): 2162-2167, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34170704

ABSTRACT

The gas phase acidities (GA) of 5,5-alkylbarbituric acids have been experimentally determined by electrospray ionization-triple quadrupole (ESI-TQ) mass spectrometry and by using the extended kinetic Cooks method (EKCM). The GAs of C-H (1330.9 ± 10.0 kJ mol-1) and N-H (1361.5 ± 10.5 kJ mol-1) deprotonated sites of bifunctional barbituric acid were determined from the selective production of their corresponding heterodimers. The GA value in the N-H site was confirmed by measuring the GAs of 5,5-dimethyl- and 5,5-diethyl barbituric acids (∼1368 kJ mol-1). The experimental results have been rationalized and discussed with the support of quantum chemical calculations with Gaussian-n (G3 and G4) composite methods, which confirmed the excellent consistency of the results.

SELECTION OF CITATIONS
SEARCH DETAIL
...