Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Geroscience ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733547

ABSTRACT

Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.

2.
Neurobiol Dis ; 191: 106404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184014

ABSTRACT

Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Osteoporosis , Aged , Humans , Mice , Animals , Alzheimer Disease/genetics , Transcriptome , Microglia , Osteoporosis/genetics , Calcium-Binding Proteins/genetics , Extracellular Matrix Proteins
3.
CRISPR J ; 6(2): 163-175, 2023 04.
Article in English | MEDLINE | ID: mdl-37071672

ABSTRACT

Microinjected transgenes, both large and small, are known to insert randomly into the mouse genome. Traditional methods of mapping a transgene are challenging, thus complicating breeding strategies and accurate interpretation of phenotypes, particularly when a transgene disrupts critical coding or noncoding sequences. As the vast majority of transgenic mouse lines remain unmapped, we developed CRISPR-Cas9 Long-Read Sequencing (CRISPR-LRS) to ascertain transgene integration loci. This novel approach mapped a wide size range of transgenes and uncovered more complex transgene-induced host genome re-arrangements than previously appreciated. CRISPR-LRS offers a facile, informative approach to establish robust breeding practices and will enable researchers to study a gene without confounding genetic issues. Finally, CRISPR-LRS will find utility in rapidly and accurately interrogating gene/genome editing fidelity in experimental and clinical settings.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , CRISPR-Cas Systems/genetics , Transgenes , Genome/genetics , Mice, Transgenic
4.
Mol Neurobiol ; 58(10): 4921-4943, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34227061

ABSTRACT

Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.


Subject(s)
Eye Proteins/genetics , Membrane Proteins/genetics , Mutation/genetics , Nerve Fibers, Myelinated/pathology , Neuronal Plasticity/physiology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Animals , Cerebellum/pathology , Female , Male , Motor Disorders/genetics , Motor Disorders/pathology , Organ Culture Techniques , Rats , Rats, Long-Evans , Rats, Transgenic
5.
J Gerontol A Biol Sci Med Sci ; 75(9): 1624-1632, 2020 09 16.
Article in English | MEDLINE | ID: mdl-30649208

ABSTRACT

Cognitive impairment in the aging population is quickly becoming a health care priority, for which currently no disease-modifying treatment is available. Multiple domains of cognition decline with age even in the absence of neurodegenerative diseases. The cellular and molecular changes leading to cognitive decline with age remain elusive. Synaptobrevin-2 (Syb2), the major vesicular SNAP receptor protein, highly expressed in the cerebral cortex and hippocampus, is essential for synaptic transmission. We have analyzed Syb2 protein levels in mice and found a decrease with age. To investigate the functional consequences of lower Syb2 expression, we have used adult Syb2 heterozygous mice (Syb2+/-) with reduced Syb2 levels. This allowed us to mimic the age-related decrease of Syb2 in the brain in order to selectively test its effects on learning and memory. Our results show that Syb2+/- animals have impaired learning and memory skills and they perform worse with age in the radial arm water maze assay. Syb2+/- hippocampal neurons have reduced synaptic plasticity with reduced release probability and impaired long-term potentiation in the CA1 region. Syb2+/- neurons also have lower vesicular release rates when compared to WT controls. These results indicate that reduced Syb2 expression with age is sufficient to cause cognitive impairment.


Subject(s)
Cognitive Aging/physiology , Memory Disorders/blood , Neuronal Plasticity/physiology , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Blotting, Western , Brain/metabolism , Brain/physiopathology , Heterozygote , Hippocampus/metabolism , Hippocampus/physiopathology , Maze Learning , Memory Disorders/physiopathology , Mice , Mice, Knockout , Vesicle-Associated Membrane Protein 2/analysis
6.
Front Cell Neurosci ; 13: 428, 2019.
Article in English | MEDLINE | ID: mdl-31616255

ABSTRACT

Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.

7.
Geroscience ; 41(2): 109-123, 2019 04.
Article in English | MEDLINE | ID: mdl-31041658

ABSTRACT

Brain-derived neurotrophic factor (BDNF) has a central role in maintaining and strengthening neuronal connections and to stimulate neurogenesis in the adult brain. Decreased levels of BDNF in the aging brain are thought to usher cognitive impairment. BDNF is stored in dense core vesicles and released through exocytosis from the neurites. The exact mechanism for the regulation of BDNF secretion is not well understood. Munc18-1 (STXBP1) was found to be essential for the exocytosis of synaptic vesicles, but its involvement in BDNF secretion is not known. Interestingly, neurons lacking munc18-1 undergo severe degeneration in knock-out mice. Here, we report the effects of BDNF treatment on the presynaptic terminal using munc18-1-deficient neurons. Reduced expression of munc18-1 in heterozygous (+/-) neurons diminishes synaptic transmitter release, as tested here on individual synaptic connections with FM1-43 fluorescence imaging. Transduction of cultured neurons with BDNF markedly increased BDNF secretion in wild-type but was less effective in munc18-1 +/- cells. In turn, BDNF enhanced synaptic functions and restored the severe synaptic dysfunction induced by munc18-1 deficiency. The role of munc18-1 in the synaptic effect of BDNF is highlighted by the finding that BDNF upregulated the expression of munc18-1 in neurons, consistent with enhanced synaptic functions. Accordingly, this is the first evidence showing the functional effect of BDNF in munc18-1 deficient synapses and about the direct role of munc18-1 in the regulation of BDNF secretion. We propose a molecular model of BDNF secretion and discuss its potential as therapeutic target to prevent cognitive decline in the elderly.


Subject(s)
Brain-Derived Neurotrophic Factor/drug effects , Brain/physiopathology , Cognitive Dysfunction/metabolism , Munc18 Proteins/metabolism , SNARE Proteins/metabolism , Aging/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/physiopathology , Humans , Mice , Mice, Knockout , Protein Binding , Sensitivity and Specificity , Synaptic Transmission/drug effects , Synaptic Vesicles
8.
J Gerontol A Biol Sci Med Sci ; 74(3): 290-298, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29893815

ABSTRACT

There is strong evidence that obesity has deleterious effects on cognitive function of older adults. Previous preclinical studies demonstrate that obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption, promoting neuroinflammation and oxidative stress. To test the hypothesis that synergistic effects of obesity and aging on inflammatory processes exert deleterious effects on hippocampal function, young and aged C57BL/6 mice were rendered obese by chronic feeding of a high-fat diet followed by assessment of learning and memory function, measurement of hippocampal long-term potentiation (LTP), assessment of changes in hippocampal expression of genes relevant for synaptic function and determination of synaptic density. Because there is increasing evidence that altered production of lipid mediators modulate LTP, neuroinflammation and neurovascular coupling responses, the effects of obesity on hippocampal levels of relevant eicosanoid mediators were also assessed. We found that aging exacerbates obesity-induced microglia activation, which is associated with deficits in hippocampal-dependent learning and memory tests, impaired LTP, decreased synaptic density, and dysregulation of genes involved in regulation of synaptic plasticity. Obesity in aging also resulted in an altered hippocampal eicosanoid profile, including decreases in vasodilator and pro-LTP epoxy-eicosatrienoic acids (EETs). Collectively, our results taken together with previous findings suggest that obesity in aging promotes hippocampal inflammation, which in turn may contribute to synaptic dysfunction and cognitive impairment.


Subject(s)
Aging/physiology , Cognitive Dysfunction/etiology , Eicosanoids/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Obesity/psychology , Animals , Biomarkers/blood , Biomarkers/metabolism , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Inflammation , Male , Mice , Mice, Inbred C57BL , Obesity/complications , Obesity/metabolism , Oxidative Stress/physiology
9.
FEBS Lett ; 592(18): 3139-3151, 2018 09.
Article in English | MEDLINE | ID: mdl-30129974

ABSTRACT

Myostatin, a TGF-ß superfamily member, is a negative regulator of muscle growth. Here we describe how myostatin activity is regulated by syndecan-4, a ubiquitous transmembrane heparan sulfate proteoglycan. During muscle regeneration the levels of both syndecan-4 and promyostatin decline gradually after a sharp increase, concurrently with the release of mature myostatin. Promyostatin and syndecan-4 co-immunoprecipitate, and the interaction is heparinase-sensitive. ShRNA-mediated silencing of syndecan-4 reduces C2C12 myoblast proliferation via blocking the progression from G1- to S-phase of the cell cycle, which is accompanied by elevated levels of myostatin and p21(Waf1/Cip1), and decreases in cyclin E and cyclin D1 expression. Our results suggest that syndecan-4 functions as a reservoir for promyostatin regulating the local bioavailability of mature myostatin.


Subject(s)
Cell Cycle , Cell Proliferation , Myoblasts/metabolism , Myostatin/metabolism , Syndecan-4/metabolism , Animals , Cell Line , Cyclin D1/metabolism , Cyclin E/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , G1 Phase , Mice , Myoblasts/cytology , RNA Interference , Rats , S Phase , Signal Transduction , Syndecan-4/genetics
10.
J Gerontol A Biol Sci Med Sci ; 73(7): 853-863, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29905772

ABSTRACT

Obesity has deleterious effects on cognitive function in the elderly adults. In mice, aging exacerbates obesity-induced oxidative stress, microvascular dysfunction, blood-brain barrier (BBB) disruption, and neuroinflammation, which compromise cognitive health. However, the specific mechanisms through which aging and obesity interact to remain elusive. Previously, we have shown that Nrf2 signaling plays a critical role in microvascular resilience to obesity and that aging is associated with progressive Nrf2 dysfunction, promoting microvascular impairment. To test the hypothesis that Nrf2 deficiency exacerbates cerebromicrovascular dysfunction induced by obesity Nrf2+/+ and Nrf2-/-, mice were fed an adipogenic high-fat diet (HFD). Nrf2 deficiency significantly exacerbated HFD-induced oxidative stress and cellular senescence, impairment of neurovascular coupling responses, BBB disruption, and microglia activation, mimicking the aging phenotype. Obesity in Nrf2-/- mice elicited complex alterations in the amyloidogenic gene expression profile, including upregulation of amyloid precursor protein. Nrf2 deficiency and obesity additively reduced long-term potentiation in the CA1 area of the hippocampus. Collectively, Nrf2 dysfunction exacerbates the deleterious effects of obesity, compromising cerebromicrovascular and brain health by impairing neurovascular coupling mechanisms, BBB integrity and synaptic function and promoting neuroinflammation. These results support a possible role for age-related Nrf2 dysfunction in the pathogenesis of vascular cognitive impairment and Alzheimer's disease.


Subject(s)
Aging/metabolism , NF-E2-Related Factor 2/deficiency , Obesity/metabolism , Aging/genetics , Aging/psychology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloidogenic Proteins/genetics , Animals , Blood-Brain Barrier/physiopathology , Cognitive Dysfunction/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Expression , Hippocampus/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred ICR , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/physiology , Neuronal Plasticity , Obesity/physiopathology , Oxidative Stress , Phenotype
11.
Mol Cell Neurosci ; 88: 33-42, 2018 04.
Article in English | MEDLINE | ID: mdl-29217410

ABSTRACT

Ohtahara syndrome, also known as type 4 of Early Infantile Epileptic Encephalopathy with suppression bursts (EIEE-4) is currently an untreatable disorder that presents with seizures and impaired cognition. EIEE-4 patients have mutations most frequently in the STXBP1 gene encoding a Sec protein, munc18-1. The exact molecular mechanism of how these munc18-1 mutations cause impaired cognition, remains elusive. The leading haploinsufficiency hypothesis posits that mutations in munc18-1 render the protein unstable leading to its degradation. Expression driven by the healthy allele is not sufficient to maintain the physiological function resulting in haploinsufficiency. The aim of this study has been to understand how munc18-1 haploinsufficiency causes cognitive impairment seen in EIEE-4. Here we present results from behavioral to cellular effects from a mouse model of munc18-1 haploinsufficiency. Munc18-1 heterozygous knock-out mice showed impaired spatial learning and memory in behavior tests as well as reduced synaptic plasticity in hippocampal CA1 long-term potentiation. Cultured munc18-1 heterozygous hippocampal neurons had significantly slower rate of synaptic vesicle release and decreased readily releasable vesicle pool compared to wild-type control neurons in fluorescent FM dye assays. These results demonstrate that reduced munc18-1 levels are sufficient to impair learning and memory by reducing neurotransmitter release. Therefore, our study implicates munc18-1 haploinsufficiency as a primary cause of cognitive impairment seen in EIEE-4 patients.


Subject(s)
Haploinsufficiency/genetics , Learning/physiology , Memory/physiology , Munc18 Proteins/genetics , Spasms, Infantile/genetics , Animals , Brain/physiopathology , Heterozygote , Mice, Knockout , Mutation/genetics , Neurons/metabolism , Synaptic Transmission/genetics , Synaptic Vesicles/metabolism
12.
Mol Neurobiol ; 55(2): 1795-1813, 2018 02.
Article in English | MEDLINE | ID: mdl-29168048

ABSTRACT

Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular mechanisms by which VLC-SFA regulate synaptic function may provide new targets for improved seizure therapies.


Subject(s)
Eye Proteins/metabolism , Fatty Acids/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Mutation , Seizures/metabolism , Animals , Disease Models, Animal , Eye Proteins/genetics , Fatty Acids/pharmacology , Hippocampus/drug effects , Macular Degeneration/genetics , Macular Degeneration/metabolism , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Seizures/genetics
13.
Geroscience ; 39(4): 385-406, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28664509

ABSTRACT

Strong epidemiological and experimental evidence indicates that hypertension has detrimental effects on the cerebral microcirculation and thereby promotes accelerated brain aging. Hypertension is an independent risk factor for both vascular cognitive impairment (VCI) and Alzheimer's disease (AD). However, the pathophysiological link between hypertension-induced cerebromicrovascular injury (e.g., blood-brain barrier disruption, increased microvascular oxidative stress, and inflammation) and cognitive decline remains elusive. The present study was designed to characterize neuronal functional and morphological alterations induced by chronic hypertension and compare them to those induced by aging. To achieve that goal, we induced hypertension in young C57BL/6 mice by chronic (4 weeks) infusion of angiotensin II. We found that long-term potentiation (LTP) of performant path synapses following high-frequency stimulation of afferent fibers was decreased in hippocampal slices obtained from hypertensive mice, mimicking the aging phenotype. Hypertension and advanced age were associated with comparable decline in synaptic density in the stratum radiatum of the mouse hippocampus. Hypertension, similar to aging, was associated with changes in mRNA expression of several genes involved in regulation of neuronal function, including down-regulation of Bdnf, Homer1, and Dlg4, which may have a role in impaired synaptic plasticity. Collectively, hypertension impairs synaptic plasticity, reduces synaptic density, and promotes dysregulation of genes involved in synaptic function in the mouse hippocampus mimicking the aging phenotype. These hypertension-induced neuronal alterations may impair establishment of memories in the hippocampus and contribute to the pathogenesis and clinical manifestation of both vascular cognitive impairment (VCI) and Alzheimer's disease (AD).

14.
Front Neuroanat ; 11: 38, 2017.
Article in English | MEDLINE | ID: mdl-28507511

ABSTRACT

ELOngation of Very Long chain fatty acids (ELOVL)-4 is essential for the synthesis of very long chain-fatty acids (fatty acids with chain lengths ≥ 28 carbons). The functions of ELOVL4 and its very long-chain fatty acid products are poorly understood at present. However, mutations in ELOVL4 cause neurodevelopmental or neurodegenerative diseases that vary according to the mutation and inheritance pattern. Heterozygous inheritance of different ELOVL4 mutations causes Stargardt-like Macular Dystrophy or Spinocerebellar Ataxia type 34. Homozygous inheritance of ELOVL4 mutations causes more severe disease characterized by seizures, intellectual disability, ichthyosis, and premature death. To better understand ELOVL4 and very long chain fatty acid function in the brain, we examined ELOVL4 expression in the mouse brain between embryonic day 18 and postnatal day 60 by immunolabeling using ELOVL4 and other marker antibodies. ELOVL4 was widely expressed in a region- and cell type-specific manner, and was restricted to cell bodies, consistent with its known localization to endoplasmic reticulum. ELOVL4 labeling was most prominent in gray matter, although labeling also was present in some cells located in white matter. ELOVL4 was widely expressed in the developing brain by embryonic day 18 and was especially pronounced in regions underlying the lateral ventricles and other neurogenic regions. The basal ganglia in particular showed intense ELOVL4 labeling at this stage. In the postnatal brain, cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, midbrain, pons, and medulla all showed prominent ELOVL4 labeling, although ELOVL4 distribution was not uniform across all cells or subnuclei within these regions. In contrast, the basal ganglia showed little ELOVL4 labeling in the postnatal brain. Double labeling studies showed that ELOVL4 was primarily expressed by neurons, although presumptive oligodendrocytes located in white matter tracts also showed labeling. Little or no ELOVL4 labeling was present in astrocytes or radial glial cells. These findings suggest that ELOVL4 and its very long chain fatty acid products are important in many parts of the brain and that they are particularly associated with neuronal function. Specific roles for ELOVL4 and its products in oligodendrocytes and myelin and in cellular proliferation, especially during development, are possible.

15.
Am J Physiol Endocrinol Metab ; 312(3): E150-E160, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27965203

ABSTRACT

The TGFß family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compacts, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared.


Subject(s)
Adipose Tissue, White/metabolism , Adiposity/genetics , Glucose/metabolism , Insulin Resistance/genetics , Muscle, Skeletal/metabolism , Mutation , Myostatin/genetics , Adipose Tissue, White/diagnostic imaging , Animals , Blood Glucose/metabolism , Blotting, Western , Fluorodeoxyglucose F18 , GTPase-Activating Proteins/metabolism , Glucose Tolerance Test , Heart/anatomy & histology , Heart/diagnostic imaging , Insulin/metabolism , Kidney/anatomy & histology , Kidney/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice , Multimodal Imaging , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/growth & development , Organ Size/genetics , Phosphoproteins , Positron-Emission Tomography , Proto-Oncogene Proteins c-akt/metabolism , Radiopharmaceuticals , Smad1 Protein/metabolism , Smad2 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism
16.
J Gerontol A Biol Sci Med Sci ; 71(1): 13-20, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26590911

ABSTRACT

As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease.


Subject(s)
Aging , Alzheimer Disease/metabolism , Brain/physiology , Cellular Senescence/physiology , Dementia, Vascular/metabolism , Aging/physiology , Aging/psychology , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Dementia, Vascular/diagnosis , Dementia, Vascular/therapy , Early Diagnosis , Early Medical Intervention/methods , Humans , Prognosis
17.
Neurol Clin Pract ; 6(6): 523-529, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28058207

ABSTRACT

PURPOSE OF REVIEW: Memory loss can be due to a wide variety of causes. We provide new information about the biology of common genetic and acquired causes of memory loss in older adults. RECENT FINDINGS: New data are available about the genetics of Alzheimer disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia. Amyloid PET, FDG-PET, and MRI have improved our understanding of how mild cognitive impairment evolves to AD. Several studies have shown links between concussion and chronic traumatic encephalopathy. Healthy eating and regular exercise have been demonstrated to slow cognitive decline in older adults. Randomized trials continue to show benefits for cholinesterase inhibitors and memantine in patients with AD and DLB. SUMMARY: New causes of memory loss are still being identified. More sophisticated diagnostic tools have improved our ability to make earlier diagnoses in older adults with memory loss.

18.
Mol Neurodegener ; 10: 49, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26399695

ABSTRACT

Following publication of this work, we noticed that we inadvertently failed to include Dr Ferenc Deák in the author list. The author list has now been corrected and the amended authors' contributions section has been modified accordingly below.

19.
J Cereb Blood Flow Metab ; 35(11): 1871-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26174328

ABSTRACT

There is increasing evidence that vascular risk factors, including aging, hypertension, diabetes mellitus, and obesity, promote cognitive impairment; however, the underlying mechanisms remain obscure. Cerebral blood flow (CBF) is adjusted to neuronal activity via neurovascular coupling (NVC) and this mechanism is known to be impaired in the aforementioned pathophysiologic conditions. To establish a direct relationship between impaired NVC and cognitive decline, we induced neurovascular uncoupling pharmacologically in mice by inhibiting the synthesis of vasodilator mediators involved in NVC. Treatment of mice with the epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH), the NO synthase inhibitor l-NG-Nitroarginine methyl ester (L-NAME), and the COX inhibitor indomethacin decreased NVC by over 60% mimicking the aging phenotype, which was associated with significantly impaired spatial working memory (Y-maze), recognition memory (Novel object recognition), and impairment in motor coordination (Rotarod). Blood pressure (tail cuff) and basal cerebral perfusion (arterial spin labeling perfusion MRI) were unaffected. Thus, selective experimental disruption of NVC is associated with significant impairment of cognitive and sensorimotor function, recapitulating neurologic symptoms and signs observed in brain aging and pathophysiologic conditions associated with accelerated cerebromicrovascular aging.


Subject(s)
Cognition Disorders/chemically induced , Cognition Disorders/psychology , Neurovascular Coupling/drug effects , Animals , Blood Pressure/drug effects , Cerebrovascular Circulation/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme System/drug effects , Enzyme Inhibitors/pharmacology , Evoked Potentials, Somatosensory/drug effects , Gait/drug effects , Hand Strength , Indomethacin/pharmacology , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type I/antagonists & inhibitors , Postural Balance/drug effects , Recognition, Psychology/drug effects
20.
Neural Regen Res ; 10(6): 866-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26199591

ABSTRACT

The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2) in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...