Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(9): e19682, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809375

ABSTRACT

Nipah virus, which originated in South-East Asia is a bat-borne virus causing Nipah virus infection in humans. This emerging infectious disease has become one of the most alarming threats to public health due to its periodic outbreaks and extremely high mortality rate. We establish and study a novel SIRS model to describe the dynamics of Nipah virus transmission, considering human-to-human as well as zoonotic transmission from bats and pigs as well as loss of immunity. We determine the basic reproduction number which can be obtained as the maximum of three threshold parameters corresponding to various ways of disease transmission and determining in which of the three species the disease becomes endemic. By constructing appropriate Lyapunov functions, we completely describe the global dynamics of our model depending on these threshold parameters. Numerical simulations are shown to support our theoretical results and assess the effect of various intervention measures.

2.
Trop Med Infect Dis ; 8(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37624336

ABSTRACT

We formulated and studied mathematical models to investigate control strategies for the outbreak of the disease caused by SARS-CoV-2, considering the transmission between humans and minks. Two novel models, namely SEIR and SVEIR, are proposed to incorporate human-to-human, human-to-mink, and mink-to-human transmission. We derive formulas for the reproduction number R0 for both models using the next-generation matrix technique. We fitted our model to the daily number of COVID-19-infected cases among humans in Denmark as an example, and using the best-fit parameters, we calculated the values of R0 to be 1.58432 and 1.71852 for the two-strain and single-strain models, respectively. Numerical simulations are conducted to investigate the impact of control measures, such as mink culling or vaccination strategies, on the number of infected cases in both humans and minks. Additionally, we investigated the possibility of the mutated virus in minks being transmitted to humans. Our results indicate that to control the disease and spread of SARS-CoV-2 mutant strains among humans and minks, we must minimize the transmission and contact rates between mink farmers and other humans by quarantining such individuals. In order to reduce the virus mutation rate in minks, culling or vaccination strategies for infected mink farms must also be implemented. These measures are essential in managing the spread of SARS-CoV-2 and its variants, protecting public health, and mitigating the potential risks associated with human-to-mink transmission.

3.
Math Biosci ; 364: 109059, 2023 10.
Article in English | MEDLINE | ID: mdl-37619887

ABSTRACT

During several epidemics, transmission from deceased people significantly contributed to disease spread, but mathematical analysis of this transmission has not been seen in the literature numerously. Transmission of Ebola during traditional burials was the most well-known example; however, there are several other diseases, such as hepatitis, plague or Nipah virus, that can potentially be transmitted from disease victims. This is especially true in the case of serious epidemics when healthcare is overwhelmed and the operative capacity of the health sector is diminished, such as seen during the COVID-19 pandemic. We present a compartmental model for the spread of a disease with an imperfect vaccine available, also considering transmission from deceased infected in general. The global dynamics of the system are completely described by constructing appropriate Lyapunov functions. To support our analytical results, we perform numerical simulations to assess the importance of transmission from the deceased, considering the data collected from three infectious diseases, Ebola virus disease, COVID-19, and Nipah fever.


Subject(s)
COVID-19 , Hemorrhagic Fever, Ebola , Humans , Epidemiological Models , Hemorrhagic Fever, Ebola/epidemiology , Pandemics , COVID-19/epidemiology
5.
Math Biosci Eng ; 19(11): 11018-11033, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36124578

ABSTRACT

Various measures have been implemented around the world to prevent the spread of SARS-CoV-2. A potential tool to reduce disease transmission is regular mass testing of a high percentage of the population, possibly with pooling (testing a compound of several samples with one single test). We develop a compartmental model to study the applicability of this method and compare different pooling strategies: regular and Dorfman pooling. The model includes isolated compartments as well, from where individuals rejoin the active population after some time delay. We develop a method to optimize Dorfman pooling depending on disease prevalence and establish an adaptive strategy to select variable pool sizes during the course of the epidemic. It is shown that optimizing the pool size can avert a significant number of infections. The adaptive strategy is much more efficient, and may prevent an epidemic outbreak even in situations when a fixed pool size strategy can not.


Subject(s)
COVID-19 , COVID-19/epidemiology , Disease Outbreaks , Epidemiological Models , Humans , Prevalence , SARS-CoV-2
6.
Heliyon ; 8(9): e10648, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36148272

ABSTRACT

We formulate and study a mathematical model for a honeybee colony infected with Varroa mites which describes the parallel phenomena of the spread of both the mites and the virus transmitted by them. We extend our previous model by including infected forager bees and considering model parameters as time-periodic functions. Firstly, we study the autonomous model and show the stability of equilibria. We present two simulation scenarios to study the impact of seasonality on the spread of Varroa mites and the disease they carry. Numerical studies are given to show how the parameter changes might lead to the colony's failure.

7.
Heliyon ; 7(8): e07760, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34430743

ABSTRACT

Lassa haemorrhagic fever is listed in WHO's Blueprint priority list of diseases and pathogens prioritized for research and development, affecting several hundreds of thousands of people each year. Lassa fever is spread via infected Natal multimammate mice and also through human-to-human contacts and it is a particular threat to pregnant women. Despite its importance, relatively few mathematical models have been established for modelling Lassa fever transmission up to now. We establish and study a new compartmental model for Lassa fever transmission including asymptomatic carriers, quarantine and periodic coefficients to model annual weather changes. We determine parameter values providing the best fit to data from Nigerian states Edo and Ondo from 2018-20. We perform uncertainty analysis and PRCC analysis to assess the importance of different parameters and numerical simulations to estimate the possible effects of control measures in eradicating the disease. The results suggest that the most important parameter which might be subject of control measures is death rate of mice, while mouse-to-human and human-to-human transmission rates also significantly influence the number of infected. However, decreasing the latter two parameters seems insufficient to eradicate the disease, while a parallel application of decreasing transmission rates and increasing mouse death rate might be able to stop the epidemic.

8.
J Theor Biol ; 527: 110812, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34129816

ABSTRACT

Development of resistance to chemotherapy in cancer patients strongly effects the outcome of the treatment. Due to chemotherapeutic agents, resistance can emerge by Darwinian evolution. Besides this, acquired drug resistance may arise via changes in gene expression. A recent discovery in cancer research uncovered a third possibility, indicating that this phenotype conversion can occur through the transfer of microvesicles from resistant to sensitive cells, a mechanism resembling the spread of an infectious agent. We present a model describing the evolution of sensitive and resistant tumour cells considering Darwinian selection, Lamarckian induction and microvesicle transfer. We identify three threshold parameters which determine the existence and stability of the three possible equilibria. Using a simple Dulac function, we give a complete description of the dynamics of the model depending on the three threshold parameters. We also establish an agent based model as a spatial version of the ODE model and compare the outputs of the two models. We find that although the ODE model does not provide spatial information about the structure of the tumour, it is capable to determine the outcome in terms of tumour size and distribution of cell types. We demonstrate the possible effects of increasing drug concentration, and characterize the possible bifurcation sequences. Our results show that the presence of microvesicle transfer cannot ruin a therapy that otherwise leads to extinction, however it may doom a partially successful therapy to failure.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/drug therapy , Phenotype , Selection, Genetic
9.
Sci Rep ; 11(1): 9233, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927224

ABSTRACT

The COVID-19 pandemic forced authorities worldwide to implement moderate to severe restrictions in order to slow down or suppress the spread of the disease. It has been observed in several countries that a significant number of people fled a city or a region just before strict lockdown measures were implemented. This behavior carries the risk of seeding a large number of infections all at once in regions with otherwise small number of cases. In this work, we investigate the effect of fleeing on the size of an epidemic outbreak in the region under lockdown, and also in the region of destination. We propose a mathematical model that is suitable to describe the spread of an infectious disease over multiple geographic regions. Our approach is flexible to characterize the transmission of different viruses. As an example, we consider the COVID-19 outbreak in Italy. Projection of different scenarios shows that (i) timely and stricter intervention could have significantly lowered the number of cumulative cases in Italy, and (ii) fleeing at the time of lockdown possibly played a minor role in the spread of the disease in the country.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , Models, Theoretical , Quarantine , SARS-CoV-2/physiology , COVID-19/transmission , Disease Outbreaks , Forecasting , Human Migration , Humans , Italy , Pandemics
10.
Bull Math Biol ; 83(4): 27, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33594490

ABSTRACT

We present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number [Formula: see text] as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If [Formula: see text] then the disease-free periodic solution is globally asymptotically stable, while if [Formula: see text] then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.


Subject(s)
Models, Biological , Seasons , Zika Virus Infection , Animals , Culicidae/physiology , Culicidae/virology , Humans , Zika Virus/physiology , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission
11.
Viruses ; 12(7)2020 06 30.
Article in English | MEDLINE | ID: mdl-32629880

ABSTRACT

COVID-19 epidemic has been suppressed in Hungary due to timely non-pharmaceutical interventions, prompting a considerable reduction in the number of contacts and transmission of the virus. This strategy was effective in preventing epidemic growth and reducing the incidence of COVID-19 to low levels. In this report, we present the first epidemiological and statistical analysis of the early phase of the COVID-19 outbreak in Hungary. Then, we establish an age-structured compartmental model to explore alternative post-lockdown scenarios. We incorporate various factors, such as age-specific measures, seasonal effects, and spatial heterogeneity to project the possible peak size and disease burden of a COVID-19 epidemic wave after the current measures are relaxed.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks/prevention & control , Female , Humans , Hungary/epidemiology , Infant , Infant, Newborn , Male , Middle Aged , Models, Statistical , Pandemics/prevention & control , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Quarantine , Risk Factors , SARS-CoV-2 , Sex Factors , Young Adult
12.
J Clin Med ; 9(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093043

ABSTRACT

We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number R loc ). We found that in countries with low connectivity to China but with relatively high R loc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low R loc benefit the most from policies that further reduce R loc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.

13.
Sci Rep ; 9(1): 17055, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745123

ABSTRACT

We establish a compartmental model to study the transmission of Zika virus disease including spread through sexual contacts and the role of asymptomatic carriers. To incorporate the impact of the seasonality of weather on the spread of Zika, we apply a nonautonomous model with time-dependent mosquito birth rate and biting rate, which allows us to explain the differing outcome of the epidemic in different countries of South America: using Latin Hypercube Sampling for fitting, we were able to reproduce the different outcomes of the disease in various countries. Sensitivity analysis shows that, although the most important factors in Zika transmission are the birth rate of mosquitoes and the transmission rate from mosquitoes to humans, spread through sexual contacts also highly contributes to the transmission of Zika virus: our study suggests that the practice of safe sex among those who have possibly contracted the disease, can significantly reduce the number of Zika cases.


Subject(s)
Safe Sex , Sexually Transmitted Diseases, Viral/prevention & control , Sexually Transmitted Diseases, Viral/transmission , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Aedes/virology , Animals , Disease Outbreaks , Female , Humans , Male , Models, Theoretical , Mosquito Vectors/virology , Sexual Behavior , South America , Weather , Zika Virus/physiology
14.
Math Biosci Eng ; 16(5): 4506-4525, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31499674

ABSTRACT

In this paper we consider a model for the spread of a sexually transmitted disease considering sexual transmission and spread via infected needles among intravenous drug users. Besides the transmission among drug users, we also consider sexual contacts between intravenous drug users and non-drug users. Furthermore, the needles are considered as a vector population. For several European countries, a sharp increase of sexually transmitted diseases was reported and several others are rated as endangered based on the number of syringes given out per intravenous drug users per year. The main purpose of the paper is to investigate the dynamics of this model including the effect of needle exchange and study the risk of an increased transmission among non-drug users, induced by the reduction of the needle exchange program. Following the determination of the basic reproduction number R0 it is shown that all solutions tend to the unique disease-free equilibrium if R0 < 1. We also prove that the disease persists in the human population if R0 > 1. Our numerical simulations, based on real life and hypothetical data for HIV, suggest that a decrease in the rate of the distribution and discharge rate of new needles might imply that the considered disease is becoming endemic in the considered human population of drug users and non-drug users. A variant of our model with time- variable needle distribition parameter is fitted to recent HIV data from Hungary to give a forecast for the number of infected in the following years.


Subject(s)
Needle-Exchange Programs , Sexually Transmitted Diseases/transmission , Basic Reproduction Number/statistics & numerical data , Computer Simulation , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV Infections/transmission , Humans , Hungary/epidemiology , Mathematical Concepts , Models, Biological , Needle Sharing/adverse effects , Needle Sharing/statistics & numerical data , Needle-Exchange Programs/statistics & numerical data , Risk Factors , Sexually Transmitted Diseases/epidemiology , Sexually Transmitted Diseases/prevention & control , Substance Abuse, Intravenous/complications
15.
Infect Dis Model ; 4: 12-27, 2019.
Article in English | MEDLINE | ID: mdl-30828672

ABSTRACT

The quarantine of people suspected of being exposed to an infectious agent is one of the most basic public health measure that has historically been used to combat the spread of communicable diseases in human communities. This study presents a new deterministic model for assessing the population-level impact of the quarantine of individuals suspected of being exposed to disease on the spread of the 2014-2015 outbreaks of Ebola viral disease. It is assumed that quarantine is imperfect (i.e., individuals can acquire infection during quarantine). In the absence of quarantine, the model is shown to exhibit global dynamics with respect to the disease-free and its unique endemic equilibrium when a certain epidemiological threshold (denoted by R 0 ) is either less than or greater than unity. Thus, unlike the full model with imperfect quarantine (which is known to exhibit the phenomenon of backward bifurcation), the version of the model with no quarantine does not undergo a backward bifurcation. Using data relevant to the 2014-2015 Ebola transmission dynamics in the three West African countries (Guinea, Liberia and Sierra Leone), uncertainty analysis of the model show that, although the current level and effectiveness of quarantine can lead to significant reduction in disease burden, they fail to bring the associated quarantine reproduction number ( R 0 Q ) to a value less than unity (which is needed to make effective disease control or elimination feasible). This reduction of R 0 Q is, however, very possible with a modest increase in quarantine rate and effectiveness. It is further shown, via sensitivity analysis, that the parameters related to the effectiveness of quarantine (namely the parameter associated with the reduction in infectiousness of infected quarantined individuals and the contact rate during quarantine) are the main drivers of the disease transmission dynamics. Overall, this study shows that the singular implementation of a quarantine intervention strategy can lead to the effective control or elimination of Ebola viral disease in a community if its coverage and effectiveness levels are high enough.

16.
Psychiatr Serv ; 69(2): 239-241, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29089008

ABSTRACT

OBJECTIVE: This study examined the implementation of crisis intervention teams by law enforcement agencies in Colorado. METHODS: Rates of Special Weapons and Tactics (SWAT) use, arrests, use of force, and injuries were assessed during 6,353 incidents involving individuals experiencing a mental health crisis. Relationships among original complaint, psychiatric illness, substance abuse, violence risk, and disposition of crisis calls were analyzed. RESULTS: Rates of SWAT use (<1%), injuries (<1%), arrests (<5%), and use of force (<5%) were low. The relative risk of transfer to treatment (versus no transfer) was significantly higher for incidents involving psychiatric illness, suicide threat or attempt, weapons, substance abuse, and violence potential. CONCLUSIONS: Use of force or SWAT, arrests, and injuries were infrequent. Suicide risk, psychiatric illness and substance abuse, even in the presence of a weapon or violence threat, increased the odds of transfer to treatment, whereas suicide risk lowered the odds of transfer to jail.


Subject(s)
Crisis Intervention , Law Enforcement , Mental Disorders/psychology , Police , Violence/statistics & numerical data , Adolescent , Adult , Child , Child, Preschool , Colorado , Female , Humans , Infant , Male , Mental Health , Middle Aged , Models, Theoretical , Young Adult
17.
Math Biosci ; 293: 64-74, 2017 11.
Article in English | MEDLINE | ID: mdl-28859911

ABSTRACT

Motivated by studies warning about a possible re-emergence of poliomyelitis in Europe, we analyse a compartmental model for the transmission of polio describing the possible effect of unvaccinated people arriving to a region with low vaccination coverage. We calculate the basic reproduction number, and determine the global dynamics of the system: we show that, depending on the parameters, one of the two equilibria is globally asymptotically stable. The main tools applied are Lyapunov functions and persistence theory. We illustrate the analytic results by numerical examples, which also suggest that in order to avoid the risk of polio re-emergence, vaccinating the immigrant population might result insufficient, and also the vaccination coverage of countries with low rates should be increased.


Subject(s)
Internationality , Models, Biological , Poliomyelitis/epidemiology , Basic Reproduction Number , Europe/epidemiology , Humans , Poliomyelitis/prevention & control , Poliomyelitis/transmission , Vaccination/statistics & numerical data
18.
Math Biosci Eng ; 14(2): 421-435, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27879107

ABSTRACT

In this paper, we study the global stability of a multistrain SIS model with superinfection. We present an iterative procedure to calculate a sequence of reproduction numbers, and we prove that it completely determines the global dynamics of the system. We show that for any number of strains with different infectivities, the stable coexistence of any subset of the strains is possible, and we completely characterize all scenarios. As an example, we apply our method to a three-strain model.


Subject(s)
Communicable Diseases/transmission , Models, Biological , Superinfection/epidemiology , Computer Simulation , Humans , Virulence/physiology
19.
PLoS One ; 10(7): e0131398, 2015.
Article in English | MEDLINE | ID: mdl-26197242

ABSTRACT

The 2014 Ebola Virus Disease (EVD) outbreak in West Africa was the largest and longest ever reported since the first identification of this disease. We propose a compartmental model for EVD dynamics, including virus transmission in the community, at hospitals, and at funerals. Using time-dependent parameters, we incorporate the increasing intensity of intervention efforts. Fitting the system to the early phase of the 2014 West Africa Ebola outbreak, we estimate the basic reproduction number as 1.44. We derive a final size relation which allows us to forecast the total number of cases during the outbreak when effective interventions are in place. Our model predictions show that, as long as cases are reported in any country, intervention strategies cannot be dismissed. Since the main driver in the current slowdown of the epidemic is not the depletion of susceptibles, future waves of infection might be possible, if control measures or population behavior are relaxed.


Subject(s)
Disease Outbreaks , Ebolavirus , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/transmission , Models, Biological , Africa, Western/epidemiology , Female , Humans , Male , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...