Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Article in English | MEDLINE | ID: mdl-38631302

ABSTRACT

BACKGROUND: Over the last century, animal models have been employed to study the gut-brain axis and its relationship with physiological processes, including those necessary for survival, such as food intake regulation and thermoregulation; those involved in diseases, ranging from inflammation to obesity; and those concerned to the development of neurodegenerative diseases and neuropsychiatric disorders, such as Alzheimer's disease and autism spectrum disorder, respectively. SUMMARY: The gut microbiota has been recognized in the last decade as an essential functional component of this axis. Many reports demonstrate that the gut microbiota influences the development of a vast array of physiological processes. Experiments that use animal models to assess the effect of the gut microbiota on the brain and behavior may involve the acute or chronic administration of wide-spectrum antibiotics. KEY MESSAGES: This narrative review summarizes the beneficial or detrimental effects of antibiotics administered prenatally or postnatally to rodents during acute or chronic periods in a wide range of protocols. These include animal models of disease and behavioral paradigms of learning and memory, anxiety, obsessive-compulsive disorder, and autism spectrum disorder. Biomarkers and behavioral assays associated with antibiotic exposure are also included in this review.

2.
Cells ; 12(21)2023 10 27.
Article in English | MEDLINE | ID: mdl-37947609

ABSTRACT

Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aß) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aß aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/metabolism , Disease Models, Animal , Oxidative Stress
4.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446312

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Mice , Animals , Alzheimer Disease/metabolism , Plaque, Amyloid/metabolism , Endothelial Cells/metabolism , Mice, Transgenic , Cerebral Amyloid Angiopathy/metabolism , Brain/metabolism , Disease Models, Animal , Amyloid beta-Peptides/metabolism
5.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835161

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aß) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/metabolism , Genome-Wide Association Study , Mutation , Neurodegenerative Diseases/genetics , Presenilin-1/genetics , Presenilin-2/genetics
6.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897785

ABSTRACT

Alzheimer's disease (AD) is a multifactorial pathology characterized by ß-amyloid (Aß) deposits, Tau hyperphosphorylation, neuroinflammatory response, and cognitive deficit. Changes in the bacterial gut microbiota (BGM) have been reported as a possible etiological factor of AD. We assessed in offspring (F1) 3xTg, the effect of BGM dysbiosisdysbiosis in mothers (F0) at gestation and F1 from lactation up to the age of 5 months on Aß and Tau levels in the hippocampus, as well as on spatial memory at the early symptomatic stage of AD. We found that BGM dysbiosisdysbiosis with antibiotics (Abx) treatment in F0 was vertically transferred to their F1 3xTg mice, as observed on postnatal day (PD) 30 and 150. On PD150, we observed a delay in spatial memory impairment and Aß deposits, but not in Tau and pTau protein in the hippocampus at the early symptomatic stage of AD. These effects are correlated with relative abundance of bacteria and alpha diversity, and are specific to bacterial consortia. Our results suggest that this specific BGM could reduce neuroinflammatory responses related to cerebral amyloidosis and cognitive deficit and activate metabolic pathways associated with the biosynthesis of triggering or protective molecules for AD.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Dysbiosis/complications , Dysbiosis/drug therapy , Female , Inflammation/complications , Memory Disorders/complications , Memory Disorders/etiology , Mice , Mice, Transgenic , tau Proteins/metabolism
7.
J Alzheimers Dis ; 87(2): 529-543, 2022.
Article in English | MEDLINE | ID: mdl-35342085

ABSTRACT

BACKGROUND: Tau hyperphosphorylation at several sites, including those close to its microtubule domain (MD), is considered a key pathogenic event in the development of tauopathies. Nevertheless, we recently demonstrated that at the very early disease stage, tau phosphorylation (pTau) at MD sites promotes neuroprotection by preventing seizure-like activity. OBJECTIVE: To further support the notion that very early pTau is not detrimental, the present work evaluated the young rTg4510 mouse model of tauopathy as a case study. Thus, in mice at one month of age (PN30-35), we studied the increase of pTau within the hippocampal area as well as hippocampal and locomotor function. METHODS: We used immunohistochemistry, T-maze, nesting test, novel object recognition test, open field arena, and electrophysiology. RESULTS: Our results showed that the very young rTg4510 mouse model has no detectable changes in hippocampal dependent tasks, such as spontaneous alternation and nesting, or in locomotor activity. However, at this very early stage the hippocampal neurons from PN30-35 rTg4510 mice accumulate pTau protein and exhibit changes in hippocampal oscillatory activity. Moreover, we found a significant reduction in the somatic area of pTau positive pyramidal and granule neurons in the young rTg4510 mice. Despite this, improved memory and increased number of dendrites per cell in granule neurons was found. CONCLUSION: Altogether, this study provides new insights into the early pathogenesis of tauopathies and provides further evidence that pTau remodels hippocampal function and morphology.


Subject(s)
Tauopathies , tau Proteins , Animals , Cognition , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
8.
Behav Brain Res ; 423: 113776, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35120930

ABSTRACT

High-fat diet (HFD) consumption has been related to metabolic alterations, such as obesity and cardiovascular problems, and has pronounced effects on brain plasticity and memory impairment. HFD exposure has a pro-inflammatory effect associated with microglial cell modifications in the hippocampus, a region involved in the working memory process. Immune tolerance can protect from inflammation in periphery induced by HFD consumption, when the immune response is desensitized in development period with lipopolysaccharide (LPS) exposure, maybe this previously state can change the course of the diseases associated to HFDs but is not known if can protect the hippocampus's inflammatory response. In the present study, male mice were injected with LPS (100 µg.kg-1 body weight) on postnatal day 3 and fed with HFD for 16 weeks after weaning. Ours results indicated that postnatal exposure to LPS in the early postnatal developmental stage combined with HFD consumption prevented glycemia, insulin, HOMA-IR, microglial process, and increased pro-inflammatory cytokines mRNA expression, without changes in body weight gain and spatial working memory with respect vehicle + HFD group. These findings suggest that HFD consumption after postnatal LPS exposure induces hippocampal immune tolerance, without prevention in spatial working memory impairment on male mice.


Subject(s)
Diet, High-Fat , Hippocampus/immunology , Immune Tolerance , Lipopolysaccharides/pharmacology , Memory Disorders/immunology , Animals , Animals, Newborn , Lipopolysaccharides/administration & dosage , Male , Memory, Short-Term/physiology , Mice , Mice, Inbred C57BL , Spatial Memory/physiology
9.
Nutr Neurosci ; 25(12): 2479-2489, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34719357

ABSTRACT

BACKGROUND: Diet-induced obesity is associated with premature cognitive decline. Elevated consumption of fats and sugars in humans and rodents has been associated with deficits in recognition memory, which is modulated by the hippocampus. Alterations in excitatory and inhibitory neurotransmitters in this area have been observed after hypercaloric diets, but the effects on episodic-like memory are not conclusive. OBJECTIVE: To investigate the effects of hypercaloric diets on memory and their relationship with γ-aminobutyric acid (GABA), glutamate and glutamine and their genetic expression in the hippocampus. DESIGN: A control diet (CD), a high-fat diet (HFD) and a combined high-fat-high-fructose diet (HFFrD) were administered to 30 C57BL/6 adult mice for 10 weeks. The discrimination indexes and exploration time of the novel object recognition (NOR) and novel object location (NOL) tasks were evaluated and GABA, glutamate and glutamine concentrations and their genetic expression were obtained from the hippocampus. RESULTS: The HFFrD induced lower discrimination indexes, decreased exploration time in the recognition memory tasks, and lowered the concentrations of glutamate and glutamine, and HFD increased their expression in the hippocampus. CONCLUSIONS: These findings suggest that a possible adaptative long-term mechanism in the hippocampal neurotransmitters, and this possibility may underlie the episodic-like memory deficits in mice fed HFD and HFFrD.


Subject(s)
Diet, High-Fat , Glutamic Acid , Humans , Animals , Mice , Diet, High-Fat/adverse effects , Glutamic Acid/metabolism , Glutamine , Fructose/adverse effects , Mice, Inbred C57BL , Hippocampus/metabolism , gamma-Aminobutyric Acid/metabolism
10.
Neurotox Res ; 39(6): 1970-1980, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34533753

ABSTRACT

There is solid epidemiological evidence that arsenic exposure leads to cognitive impairment, while experimental work supports the hypothesis that it also contributes to neurodegeneration. Energy deficit, oxidative stress, demyelination, and defective neurotransmission are demonstrated arsenic effects, but it remains unclear whether synaptic structure is also affected. Employing both a triple-transgenic Alzheimer's disease model and Wistar rats, the cortical microstructure and synapses were analyzed under chronic arsenic exposure. Male animals were studied at 2 and 4 months of age, after exposure to 3 ppm sodium arsenite in drinking water during gestation, lactation, and postnatal development. Through nuclear magnetic resonance, diffusion-weighted images were acquired and anisotropy (integrity; FA) and apparent diffusion coefficient (dispersion degree; ADC) metrics were derived. Postsynaptic density protein and synaptophysin were analyzed by means of immunoblot and immunohistochemistry, while dendritic spine density and morphology of cortical pyramidal neurons were quantified after Golgi staining. A structural reorganization of the cortex was evidenced through high-ADC and low-FA values in the exposed group. Similar changes in synaptic protein levels in the 2 models suggest a decreased synaptic connectivity at 4 months of age. An abnormal dendritic arborization was observed at 4 months of age, after increased spine density at 2 months. These findings demonstrate alterations of cortical synaptic connectivity and microstructure associated to arsenic exposure appearing in young rodents and adults, and these subtle and non-adaptive plastic changes in dendritic spines and in synaptic markers may further progress to the degeneration observed at older ages.


Subject(s)
Arsenic Poisoning/pathology , Cerebral Cortex/drug effects , Synapses/drug effects , Animals , Arsenic Poisoning/diagnostic imaging , Blotting, Western , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Diffusion Tensor Imaging , Female , Male , Mice, Transgenic , Neuronal Plasticity/drug effects , Rats , Rats, Wistar , Synapses/pathology
11.
J Circadian Rhythms ; 19: 7, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34163535

ABSTRACT

The progression of amyloid plaques and neurofibrillary tangles in different brain areas is associated with the effects of Alzheimer's disease (AD). In addition to cognitive impairment, circadian alterations in locomotor activity have also been detected, but they have not been characterized in a jet lag protocol. Therefore, the present study aimed to compare 3xTg-AD and non-transgenic mice in changes of 24 h cycles of spontaneous locomotor activity in a jet lag protocol, in an environment without a running wheel, at 3 different states of neuronal damage: early, intermediate and advanced (3, 8 and 13 months, respectively). The 3xTg-AD mice at 3 months presented differences in phase angle and acrophase, and differentially increased activity after advances more than after delays. At 13 months, a shortening of the free-running period in constant darkness was also noted. 3xTg-AD mice showed a significant increase (123%) in global activity at 8 to 13 months and in nighttime activity (153%) at 13 months. In the advance protocol (ADV), 3xTg-AD mice displayed a significant increase in global activity (171%) at 8 and 13 months. The differences in masking effect were evident at 8 months. To assess a possible retinal dysfunction that could interfere with photic entrainment as part of the neurodegenerative process, we compared electroretinogram recordings. The results showed early deterioration in the retinal response to light flashes in mesopic conditions, observed in the B-wave latency and amplitude. Thus, our study presents new behavioral and pathological characteristics of 3xTg-AD mice and reveals the usefulness of non-invasive tools in early diagnosis.

12.
Front Neurosci ; 15: 595583, 2021.
Article in English | MEDLINE | ID: mdl-33994914

ABSTRACT

The irreversible and progressive neurodegenerative Alzheimer's disease (AD) is characterized by cognitive decline, extracellular ß-amyloid peptide accumulation, and tau neurofibrillary tangles in the cortex and hippocampus. The triple-transgenic (3xTg) mouse model of AD presents memory impairment in several behavioral paradigms and histopathological alterations from 6 to 16 months old. Additionally, it seems that dysbiotic gut microbiota is present in both mouse models and patients of AD at the cognitive symptomatic stage. The present study aimed to assess spatial learning, memory retention, and gut microbiota alterations in an early adult stage of the 3xTg-AD mice as well as to explore its sexual dimorphism. We evaluated motor activity, novel-object localization training, and retention test as well as collected fecal samples to characterize relative abundance, alpha- and beta-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis in gut microbiota in both female and male 3xTg-AD mice, and controls [non-transgenic mice (NoTg)], at 3 and 5 months old. We found spatial memory deficits in female and male 3xTg-AD but no alteration neither during training nor in motor activity. Importantly, already at 3 months old, we observed decreased relative abundances of Actinobacteria and TM7 in 3xTg-AD compared to NoTg mice, while the beta diversity of gut microbiota was different in female and male 3xTg-AD mice in comparison to NoTg. Our results suggest that gut microbiota modifications in 3xTg-AD mice anticipate and thus could be causally related to cognitive decline already at the early adult age of AD. We propose that microbiota alterations may be used as an early and non-invasive diagnostic biomarker of AD.

14.
BMC Neurosci ; 22(1): 14, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33653273

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by cognitive impairment that eventually develops into dementia. Amyloid-beta (Aß) accumulation is a widely described hallmark in AD, and has been reported to cause olfactory dysfunction, a condition considered an early marker of the disease associated with injuries in the olfactory bulb (OB), the hippocampus (HIPP) and other odor-related cortexes. Adiponectin (APN) is an adipokine with neuroprotective effects. Studies have demonstrated that APN administration decreases Aß neurotoxicity and Tau hyperphosphorylation in the HIPP, reducing cognitive impairment. However, there are no studies regarding the neuroprotective effects of APN in the olfactory dysfunction observed in the Aß rat model. The aim of the present study is to determine whether the intracerebroventricular (i.c.v) administration of APN prevents the early olfactory dysfunction in an i.c.v Amyloid-beta1-42 (Aß1-42) rat model. Hence, we evaluated olfactory function by using a battery of olfactory tests aimed to assess olfactory memory, discrimination and detection in the Aß rat model treated with APN. In addition, we determined the number of cells expressing the neuronal nuclei (NeuN), as well as the number of microglial cells by using the ionized calcium-binding adapter molecule 1 (Iba-1) marker in the OB and, CA1, CA3, hilus and dentate gyrus (DG) in the HIPP. Finally, we determined Arginase-1 expression in both nuclei through Western blot. RESULTS: We observed that the i.c.v injection of Aß decreased olfactory function, which was prevented by the i.c.v administration of APN. In accordance with the olfactory impairment observed in i.c.v Aß-treated rats, we observed a decrease in NeuN expressing cells in the glomerular layer of the OB, which was also prevented with the i.c.v APN. Furthermore, we observed an increase of Iba-1 cells in CA1, and DG in the HIPP of the Aß rats, which was prevented by the APN treatment. CONCLUSION: The present study describes the olfactory impairment of Aß treated rats and evidences the protective role that APN plays in the brain, by preventing the olfactory impairment induced by Aß1-42. These results may lead to APN-based pharmacological therapies aimed to ameliorate AD neurotoxic effects.


Subject(s)
Adiponectin/pharmacology , Alzheimer Disease , Brain/drug effects , Neuroprotective Agents/pharmacology , Olfaction Disorders , Amyloid beta-Peptides/toxicity , Animals , Disease Models, Animal , Injections, Intraventricular , Male , Olfaction Disorders/etiology , Rats , Rats, Wistar
15.
Bioorg Med Chem ; 28(20): 115700, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33069076

ABSTRACT

The aggregation of ß-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of ß-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-ß-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aß1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aß1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal ß-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Naphthalenes/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/antagonists & inhibitors , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Dose-Response Relationship, Drug , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Peptide Fragments/metabolism , Protein Aggregation, Pathological/metabolism , Structure-Activity Relationship , Thermodynamics
17.
Bio Protoc ; 10(4): e3529, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-33654753

ABSTRACT

Transgenic mice have been used to make valuable contributions to the field of neuroscience and model neurological diseases. The simultaneous functional analysis of hippocampal cell activity combined with hippocampal dependent innate task evaluations provides a reliable experimental approach to detect fine changes during early phases of neurodegeneration. To this aim, we used a merge of patch-clamp with two hippocampal innate behavior tasks. With this experimental approach, whole-cell recordings of CA1 pyramidal cells, combined with hippocampal-dependent innate behaviors, have been crucial for evaluating the early mechanism of neurodegeneration and its consequences. Here, we present our protocol for ex vivo whole-cell recordings of CA1 pyramidal cells and hippocampal dependent innate behaviors in an adolescent (p30) mice.

18.
Behav Brain Res ; 379: 112373, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31759047

ABSTRACT

The hippocampus plays a fundamental role in spatial learning and memory. Dentate gyrus (DG) granular neurons project mainly to proximal apical dendrites of neurons in the CA3 stratum lucidum and also, to some extent, to the basal dendrites of CA3 pyramidal cells in the stratum oriens. The terminal specializations of DG neurons are the mossy fibers (MF), and these huge axon terminals show expansion in the CA3 stratum oriens after the animals undergo overtraining in the Morris Water Maze task (MWM). However, to our knowledge there are no reports regarding the possible changes in density of post-synaptic targets of these terminals in the basal dendrites of CA3 neurons after overtraining in the MWM. The purpose of this work was to study the density of thorny excrescences (TE) and other dendritic spine types (stubby, thin, and mushroom) in the CA3 stratum oriens in animals overtrained in the MWM for three consecutive days and in animals trained for only one day. Seven days after MWM training, the animals were sacrificed, and their brains removed and processed for rapid Golgi staining to visualize the different types of dendritic protrusions. Our results revealed that the relative quantity of stubby, thin, and mushroom dendritic spines did not change, regardless of amount of training. However, a significant increase in the density of TE was detected in the overtrained animals. These results strongly suggest that spatial water maze overtraining induces an increased density of MF-TE connections, which might be functionally relevant for long-term spatial memory formation.


Subject(s)
CA3 Region, Hippocampal/cytology , Dendritic Spines , Morris Water Maze Test/physiology , Practice, Psychological , Pyramidal Cells , Animals , CA3 Region, Hippocampal/physiology , Dendritic Spines/physiology , Male , Memory, Long-Term/physiology , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Spatial Memory/physiology
19.
ACS Chem Neurosci ; 10(1): 323-336, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30141907

ABSTRACT

Worldwide, every year there is an increase in the number of people exposed to inorganic arsenic (iAs) via drinking water. Human populations present impaired cognitive function as a result of prenatal and childhood iAs exposure, while studies in animal models demonstrate neurobehavioral deficits accompanied by neurotransmitter, protein, and enzyme alterations. Similar impairments have been observed in close association with Alzheimer's disease (AD). In order to determine whether iAs promotes the pathophysiological progress of AD, we used the 3xTgAD mouse model. Mice were exposed to iAs in drinking water from gestation until 6 months (As-3xTgAD group) and compared with control animals without arsenic (3xTgAD group). We investigated the behavior phenotype on a test battery (circadian rhythm, locomotor behavior, Morris water maze, and contextual fear conditioning). Adenosine triphosphate (ATP), reactive oxygen species, lipid peroxidation, and respiration rates of mitochondria were evaluated, antioxidant components were detected by immunoblots, and immunohistochemical studies were performed to reveal AD markers. As-3xTgAD displayed alterations in their circadian rhythm and exhibited longer freezing time and escape latencies compared to the control group. The bioenergetic profile revealed decreased ATP levels accompanied by the decline of complex I, and an oxidant state in the hippocampus. On the other hand, the cortex showed no changes of oxidant stress and complex I; however, the antioxidant response was increased. Higher immunopositivity to amyloid isoforms and to phosphorylated tau was observed in frontal cortex and hippocampus of exposed animals. In conclusion, mitochondrial dysfunction may be one of the triggering factors through which chronic iAs exposure exacerbates brain AD-like pathology.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Arsenic/toxicity , Energy Metabolism/physiology , Hippocampus/metabolism , Maze Learning/physiology , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Energy Metabolism/drug effects , Female , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Presenilin-1/genetics , tau Proteins/genetics
20.
J Biol Chem ; 293(22): 8462-8472, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29632073

ABSTRACT

Tau hyperphosphorylation at several sites, including those close to the microtubule domain region (MDr), is considered a key pathological event in the development of Alzheimer's disease (AD). Recent studies indicate that at the very early stage of this disease, increased phosphorylation in Tau's MDr domain correlates with reduced levels of neuronal excitability. Mechanistically, we show that pyramidal neurons and some parvalbumin-positive interneurons in 1-month-old triple-transgenic AD mice accumulate hyperphosphorylated Tau protein and that this accumulation correlates with changes in theta oscillations in hippocampal neurons. Pyramidal neurons from young triple-transgenic AD mice exhibited less spike accommodation and power increase in subthreshold membrane oscillations. Furthermore, triple-transgenic AD mice challenged with the potassium channel blocker 4-aminopyridine had reduced theta amplitude compared with 4-aminopyridine-treated control mice and, unlike these controls, displayed no seizure-like activity after this challenge. Collectively, our results provide new insights into AD pathogenesis and suggest that increases in Tau phosphorylation at the initial stages of the disease represent neuronal responses that compensate for brain circuit overexcitation.


Subject(s)
Action Potentials , Alzheimer Disease/pathology , Disease Models, Animal , Hippocampus/pathology , Pyramidal Cells/pathology , Theta Rhythm/physiology , tau Proteins/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Hippocampus/metabolism , Male , Mice , Mice, Transgenic , Phosphorylation , Pyramidal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...